新古典力学 - 科学の基礎研究
りょうほぞんのほうそくここまでFrFhFlFsFdFxFyFzここからFrの積の微分法則FrのせきのびぶんほうそくFrの部分積分FrのぶぶんせきぶんFrの部分和分Frのぶぶんわぶんmvvの積の微分法則mvvのせきのびぶんほうそくmvvの部分積分mvvのぶぶんせきぶんmvvの部分和
りょうほぞんのほうそくここまでFrFhFlFsFdFxFyFzここからFrの積の微分法則FrのせきのびぶんほうそくFrの部分積分FrのぶぶんせきぶんFrの部分和分Frのぶぶんわぶんmvvの積の微分法則mvvのせきのびぶんほうそくmvvの部分積分mvvのぶぶんせきぶんmvvの部分和
mtum運動量保存の法則うんどうりょうほぞんのほうそくここまでここからFzの積の微分法則FzのせきのびぶんほうそくFzの部分積分FzのぶぶんせきぶんFzの部分和分Fzのぶぶんわぶんmvvの積の微分法則mvvのせきのびぶんほうそくmvvの部分積分mvvのぶぶんせきぶんmvvの部分和
mtum運動量保存の法則うんどうりょうほぞんのほうそくここまでここからFxの積の微分法則FxのせきのびぶんほうそくFxの部分積分FxのぶぶんせきぶんFxの部分和分Fxのぶぶんわぶんmvvの積の微分法則mvvのせきのびぶんほうそくmvvの部分積分mvvのぶぶんせきぶんmvvの部分和
mtum運動量保存の法則うんどうりょうほぞんのほうそくここまでここからFyの積の微分法則FyのせきのびぶんほうそくFyの部分積分FyのぶぶんせきぶんFyの部分和分Fyのぶぶんわぶんmvvの積の微分法則mvvのせきのびぶんほうそくmvvの部分積分mvvのぶぶんせきぶんmvvの部分和
mtum運動量保存の法則うんどうりょうほぞんのほうそくここまでここからFdの積の微分法則FdのせきのびぶんほうそくFdの部分積分FdのぶぶんせきぶんFdの部分和分Fdのぶぶんわぶんmvvの積の微分法則mvvのせきのびぶんほうそくmvvの部分積分mvvのぶぶんせきぶんmvvの部分和
Fv(cosθ)=Fv(cosθ)Fvcosθ=FvcosθFv=Fv積の微分法則せきのびぶんほうそくProduct Rule部分積分ぶぶんせきぶんIntegration By PartsここからFx(Fx)'=(Fx)'(ΔFx/Δt)=(ΔFx/Δt)(ΔFx)=(ΔFx)(
mtum運動量保存の法則うんどうりょうほぞんのほうそくここまでここからFsの積の微分法則FsのせきのびぶんほうそくFsの部分積分FsのぶぶんせきぶんFsの部分和分Fsのぶぶんわぶんmvvの積の微分法則mvvのせきのびぶんほうそくmvvの部分積分mvvのぶぶんせきぶんmvvの部分和
Fx=Fx(Fx)=(Fx)位置エネルギーいちエネルギーFxの部0始め積の微分法則せきのびぶんほうそくProduct Rule部分積分ぶぶんせきぶんIntegration By Partsここから位置エネルギーいちエネルギー最初はFx(Fx)'=(Fx)'(ΔFx/Δt)=(ΔF
Fv(cosθ)=Fv(cosθ)Fvcosθ=FvcosθFv=Fv積の微分法則せきのびぶんほうそくProduct Rule部分積分ぶぶんせきぶんIntegration By PartsここからFx(Fx)'=(Fx)'(ΔFx/Δt)=(ΔFx/Δt)(ΔFx)=(ΔFx)(
x/Δt=vΔFx/Δt=F'x+FvΣ(ΔFx/Δt)Δt=ΣF'xΔt+ΣFvΔtIntegration By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+
Fx=Fx(Fx)=(Fx)位置エネルギーいちエネルギーFxの部0始め積の微分法則せきのびぶんほうそくProduct Rule部分積分ぶぶんせきぶんIntegration By Partsここから位置エネルギーいちエネルギー最初はFx(Fx)'=(Fx)'(ΔFx/Δt)=(ΔF
Fx=Fx(Fx)=(Fx)位置エネルギーいちエネルギーFxの部0始め積の微分法則せきのびぶんほうそくProduct Rule部分積分ぶぶんせきぶんIntegration By Partsここから位置エネルギーいちエネルギー最初はFx(Fx)'=(Fx)'(ΔFx/Δt)=(ΔF
Fx=Fx(Fx)=(Fx)位置エネルギーいちエネルギーFxの部0始め積の微分法則せきのびぶんほうそくProduct Rule部分積分ぶぶんせきぶんIntegration By Partsここから位置エネルギーいちエネルギー最初はFx(Fx)'=(Fx)'(ΔFx/Δt)=(ΔF
Fx=Fx(Fx)=(Fx)位置エネルギーいちエネルギーFxの部0始め積の微分法則せきのびぶんほうそくProduct Rule部分積分ぶぶんせきぶんIntegration By Partsここから位置エネルギーいちエネルギー最初はFx(Fx)'=(Fx)'(&De
Fx=Fx(Fx)=(Fx)位置エネルギーいちエネルギーFxの部0始め積の微分法則せきのびぶんほうそくProduct Rule部分積分ぶぶんせきぶんIntegration By Partsここから位置エネルギーいちエネルギー最初はFx(Fx)'=(Fx)'(ΔFx/Δt)=(ΔF
mtum運動量保存の法則うんどうりょうほぞんのほうそくここまでここからFlの積の微分法則FlのせきのびぶんほうそくFlの部分積分FlのぶぶんせきぶんFlの部分和分Flのぶぶんわぶんmvvの積の微分法則mvvのせきのびぶんほうそくmvvの部分積分mvvのぶぶんせきぶんmvvの部分和
x/Δt=vΔFx/Δt=F'x+FvΣ(ΔFx/Δt)Δt=ΣF'xΔt+ΣFvΔtIntegration By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+
;t=ΣF'xΔt+ΣFvΔtIntegration By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔ
x/Δt=vΔFx/Δt=F'x+FvΣ(ΔFx/Δt)Δt=ΣF'xΔt+ΣFvΔtIntegration By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+
x/Δt=vΔFx/Δt=F'x+FvΣ(ΔFx/Δt)Δt=ΣF'xΔt+ΣFvΔtIntegration By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+
x/Δt=vΔFx/Δt=F'x+FvΣ(ΔFx/Δt)Δt=ΣF'xΔt+ΣFvΔtIntegration By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+
x/Δt=vΔFx/Δt=F'x+FvΣ(ΔFx/Δt)Δt=ΣF'xΔt+ΣFvΔtIntegration By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+
x/Δt=vΔFx/Δt=F'x+FvΣ(ΔFx/Δt)Δt=ΣF'xΔt+ΣFvΔtIntegration By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+
x/Δt=vΔFx/Δt=F'x+FvΣ(ΔFx/Δt)Δt=ΣF'xΔt+ΣFvΔtIntegration By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+
x/Δt=vΔFx/Δt=F'x+FvΣ(ΔFx/Δt)Δt=ΣF'xΔt+ΣFvΔtIntegration By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+
x/Δt=vΔFx/Δt=F'x+FvΣ(ΔFx/Δt)Δt=ΣF'xΔt+ΣFvΔtIntegration By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+
;t=ΣF'xΔt+ΣFvΔtIntegration By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔ
;t=ΣF'xΔt+ΣFvΔtIntegration By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔ
ciple不確定性原理ふかくていせいげんり不確定値ふかくていちDerivative And Integral Calculus微分積分びぶんせきぶんIrrational Numbers無理数むりすうΔEΔt=ΔpΔx≧h/4π
;t=ΣF'xΔt+ΣFvΔtIntegration By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔ
;t=ΣF'xΔt+ΣFvΔtIntegration By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔ
x/Δt=vΔFx/Δt=F'x+FvΣ(ΔFx/Δt)Δt=ΣF'xΔt+ΣFvΔtIntegration By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+
せつげんあたまにヒンヤリ からだはポカポカになる ベッド座ることができる。12レンガのだんろポカポカハウスまきをくべると じんわりと しあわせきぶんになる だんろ13Interior43.pngぼうしのソファスライダーマウンテンモコモコした ポンポンのついた ソファ座ることができ
ciple不確定性原理ふかくていせいげんり不確定値ふかくていちDerivative And Integral Calculus微分積分びぶんせきぶんIrrational Numbers無理数むりすうΔpΔx≧h/4πδΣp&D
-(1/2)mvvE+(1/2)mvv=C=1Fx+(1/2)mvv=C=1Path Integral Formulation経路積分けいろせきぶんRichard Phillips FeynmanFn=-Fn+1[ΔF]n=-[ΔF]n+1[ΣΔFΔr]n=-[ΣΔFΔr]n+1
Delta;tΣΔmvv=2ΣFvΔtIntegration By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔmvv=2ΣFvΔt差分
なる余談であるが、この記号を打ち込む際、Windows10端末の標準設定では「ふぁい」で変換しないと正しく入力ができない。「いんてぐらる」「せきぶん」だと非常によく似た「∲」「∳」が出てくる。拡大すると分かるが、○の部分に小さく右回り・左回りの矢印が書かれており、別の記号である。
veDerivertiveDifferentialDifferential Calculus微分びぶんIntegral Calculus積分せきぶんContinuous Value連続値れんぞくちIrrational Number無理数むりすうProbability Theory