暫定版

ページ名:暫定版

古典力学
こてんりきがく
Classical Mechanics
Classical Dynamics


運動方程式
うんどうほうていしき
Equation Of Motion
重力
じゅうりょく
Gravity
Gravitation
反重力
はんじゅうりょく
Anti Gravity
Anti Gravitation
向心力
こうしんりょく
遠心力
えんしんりょく
単振動
たんしんどう
フック
ふっく
バネ
ばね


F=F
ma=ma
GMm/r^2=GMm/r^2
mvv/r=mvv/r
mω^2r=mω^2r
kr=kr


F=ma
F=GMm/r^2
F=mvv/r
F=mω^2r
F=kr


角運動量
かくうんどうりょう


L=rpsinθ
L=L
rpsinθ=rpsinθ
rmvsinθ=rmvsinθ
mvrsinθ=mvrsinθ
mv2πrsinθ=mv2πrsinθ
(-mv2πrsinθ)=(-mv2πrsinθ)
mv2πr(-sinθ)=mv2πr(-sinθ)
(cosθ)'=-sinθ
mv2πr(cosθ)'=mv2πr(cosθ)'
mv2πr(cosθ)(Δ/Δθ)=mv2πr(cosθ)(Δ/Δθ)
mv2πr(cosθ)=mv2πr(cosθ)
mv2πrcosθ=mv2πrcosθ
mv2πr=mv2πr
h=h


mv2πrcosθ=mv2πrcosθ
hcosθ=hcosθ
mv2πrcosθ=hcosθ
mv2πr=h


量子条件
りょうしじょうけん




角運動量
かくうんどうりょう


L=rpsinθ
L=L
rpsinθ=rpsinθ
rmvsinθ=rmvsinθ
mvrsinθ=mvrsinθ
(-mv2πrsinθ)=(-mv2πrsinθ)
mv2πr(-sinθ)=mv2πr(-sinθ)
(cosθ)'=-sinθ
mv2πr(cosθ)'=mv2πr(cosθ)'
mv2πr(cosθ)(Δ/Δθ)=mv2πr(cosθ)(Δ/Δθ)
mv2πr(cosθ)=mv2πr(cosθ)
mv2πrcosθ=mv2πrcosθ
pλcosθ=pλcosθ
pλ=pλ


mv2πrcosθ=mv2πrcosθ
pλcosθ=pλcosθ
mv2πrcosθ=pλcosθ
mv2πr=pλ


量子条件
りょうしじょうけん



角運動量
かくうんどうりょう


L=rpsinθ
L=L
rpsinθ=rpsinθ
rmvsinθ=rmvsinθ
mvrsinθ=mvrsinθ
mv2πrsinθ=mv2πrsinθ
(-mv2πrsinθ)=(-mv2πrsinθ)
mv2πr(-sinθ)=mv2πr(-sinθ)
(cosθ)'=-sinθ
mv2πr(cosθ)'=mv2πr(cosθ)'
mv2πr(cosθ)(Δ/Δθ)=mv2πr(cosθ)(Δ/Δθ)
mv2πr(cosθ)=mv2πr(cosθ)
mv2πrcosθ=mv2πrcosθ
pλcosθ=pλcosθ
hcosθ=hcosθ
h=h


pλcosθ=pλcosθ
hcosθ=hcosθ
pλcosθ=hcosθ
pλ=h


量子条件
りょうしじょうけん




角運動量
かくうんどうりょう


L=rpsinθ
L=L
rpsinθ=rpsinθ
rmvsinθ=rmvsinθ
mvrsinθ=mvrsinθ
mv2πrsinθ=mv2πrsinθ
(-mv2πrsinθ)=(-mv2πrsinθ)
mv2πr(-sinθ)=mv2πr(-sinθ)
(cosθ)'=-sinθ
mv2πr(cosθ)'=mv2πr(cosθ)'
mv2πr(cosθ)(Δ/Δθ)=mv2πr(cosθ)(Δ/Δθ)
mv2πr(cosθ)=mv2πr(cosθ)
mv2πrcosθ=mv2πrcosθ
pλcosθ=pλcosθ
hcosθ=hcosθ


pcosθ=pcosθ
p=p


pcosθ=pcosθ
(h/λ)cosθ=(h/λ)cosθ
(h/λ)=(h/λ)


pλcosθ=pλcosθ
hcosθ=hcosθ
pcosθ=pcosθ
(h/λ)cosθ=(h/λ)cosθ
pcosθ=(h/λ)cosθ
p=h/λ


p=h/λ
p=h/λ=mv=Mv/(1-v/c)
mv=Mv/(1-v/c)
m=M/(1-v/c)
m(1-v/c)=M
M=m(1-v/c)
Mc=m(c-v)


p=h/λ
p=h/λ=mv=Mv/(v/c-1)
mv=Mv/(v/c-1)
m=M/(v/c-1)
m(v/c-1)=M
M=m(v/c-1)
Mc=m(v-c)


量子条件
りょうしじょうけん




角運動量
かくうんどうりょう


L=rpsinθ
L=L
rpsinθ=rpsinθ
rmvsinθ=rmvsinθ
mvrsinθ=mvrsinθ
mv2πrsinθ=mv2πrsinθ
(-mv2πrsinθ)=(-mv2πrsinθ)
mv2πr(-sinθ)=mv2πr(-sinθ)
(cosθ)'=-sinθ
mv2πr(cosθ)'=mv2πr(cosθ)'
mv2πr(cosθ)(Δ/Δθ)=mv2πr(cosθ)(Δ/Δθ)
mv2πr(cosθ)=mv2πr(cosθ)
mv2πrcosθ=mv2πrcosθ
pλcosθ=pλcosθ
hcosθ=hcosθ


pλcosθ=pλcosθ
λcosθ=λcosθ
λ=λ


pλcosθ=pλcosθ
λcosθ=λcosθ
(h/p)cosθ=(h/p)cosθ
(h/p)=(h/p)


pλcosθ=pλcosθ
hcosθ=hcosθ
λcosθ=λcosθ
(h/p)cosθ=(h/p)cosθ
λcosθ=(h/p)cosθ
λ=h/p


量子条件
りょうしじょうけん




角運動量
かくうんどうりょう


L=rpsinθ
L=L
rpsinθ=rpsinθ
prsinθ=prsinθ
(-prsinθ)=(-prsinθ)
pr(-sinθ)=pr(-sinθ)
(cosθ)'=-sinθ
pr(cosθ)'=pr(cosθ)'
pr(cosθ)(Δ/Δθ)=pr(cosθ)(Δ/Δθ)
pr(cosθ)=pr(cosθ)
prcosθ=prcosθ
px=px
ΔpΔx=ΔpΔx
FΔtΔx=FΔtΔx
FΔxΔt=FΔxΔt
ΔEΔt=ΔEΔt


ΔpΔx=ΔpΔx
FΔtΔx=FΔtΔx
FΔxΔt=FΔxΔt
ΔEΔt=ΔEΔt
ΔEΔt=ΔpΔx


ΔEΔt=ΔpΔx
h/4π=h/4π
ΔEΔt=ΔpΔx=h/4π


FΔxΔt=FΔxΔt
F(Δx/Δt)ΔtΔt=F(Δx/Δt)ΔtΔt
FvΔtΔt=FvΔtΔt
h/4π=h/4π
FvΔtΔt=FvΔtΔt=h/4π


確定性原理
かくていせいげんり




角運動量
かくうんどうりょう


L=rpsinθ
L=L
rpsinθ=rpsinθ
rmvsinθ=rmvsinθ
rvsinθ=rvsinθ
(1/2)rvsinθ=(1/2)rvsinθ
S=S
S=(1/2)rvsinθ


面積速度
めんせきそくど
Area Speed


S=(1/2)rvsinθ
S=S
(1/2)rvsinθ=(1/2)rvsinθ
rvsinθ=rvsinθ
rv=rv
(1/r^2)v=(1/r^2)v
Fv=Fv


Fv=Fv
Fvsinθ=Fvsinθ
Fv(-sinθ)=Fv(-sinθ)
(cosθ)'=-sinθ
Fv(cosθ)'=Fv(cosθ)'
Fv(cosθ)(Δ/Δt)=Fv(cosθ)(Δ/Δt)
Fv(cosθ)=Fv(cosθ)
Fvcosθ=Fvcosθ
Fv=Fv







積の微分法則
せきのびぶんほうそく
Product Rule
部分積分
ぶぶんせきぶん
Integration By Parts
ここから
Fx
(Fx)'=(Fx)'
(ΔFx/Δt)=(ΔFx/Δt)
(ΔFx)=(ΔFx)
(Fx)=(Fx)


Fx
(Fx)'=(Fx)'
(ΔFx/Δt)=(ΔFx/Δt)
ΔFx/Δt=ΔFx/Δt
(ΔFx)=(ΔFx)
ΔFx=ΔFx
(Fx)=(Fx)
Fx=Fx


Fvcosθ=Fvcosθ
Fv=Fv
F(Δx/Δt)=F(Δx/Δt)
(ΔFx/Δt)=(ΔFx/Δt)
(Fx)'(t)=(Fx)'(t)
(Fx)'=(Fx)'
(Fx)'(t)=(Fx)'(t)
(ΔFx/Δt)=(ΔFx/Δt)
(ΔFx)=(ΔFx)
(ΣΔFx)=(ΣΔFx)
(Fx)=(Fx)


Fvcosθ=Fvcosθ
Fv=Fv
F(Δx/Δt)=F(Δx/Δt)
(ΔFx/Δt)=(ΔFx/Δt)
ΔFx/Δt=ΔFx/Δt
(Fx)'(t)=(Fx)'(t)
(Fx)'=(Fx)'
(Fx)'(t)=(Fx)'(t)
(ΔFx/Δt)=(ΔFx/Δt)
ΔFx/Δt=ΔFx/Δt
(ΔFx)=(ΔFx)
ΔFx=ΔFx
(ΣΔFx)=(ΣΔFx)
ΣΔFx=ΣΔFx
(Fx)=(Fx)
Fx=Fx


ここまで


ここから
(Fx)'=(Fx)'
(1/2)(mvv)'=(1/2)(mvv)'
(mvv)'=(mvv)'
(mvv)'=(mvv)'
(1/2)(mvv)'=(1/2)(mvv)'
(Fx)'=(Fx)'


(Fx)'=(Fx)'
(max)'=(max)'
[max]'=[max]'
[m(Δv/Δt)x]'=[m(Δv/Δt)x]'
[mv(Δ/Δt)x]'=[mv(Δ/Δt)x]'
[mv(Δx/Δt)]'=[mv(Δx/Δt)]'
[mvv]'=[mvv]'
(mvv)'=(mvv)'
(1/2)(mvv)'=(1/2)(mvv)'


(1/2)(mvv)'=(1/2)(mvv)'
(mvv)'=(mvv)'
[mvv]'=[mvv]'
[mv(Δx/Δt)]'=[mv(Δx/Δt)]'
[mv(Δ/Δt)x]'=[mv(Δ/Δt)x]'
[m(Δv/Δt)x]'=[m(Δv/Δt)x]'
[max]'=[max]'
(max)'=(max)'
(Fx)'=(Fx)'
ここまで


ここから
(ΔFx/Δt)=(ΔFx/Δt)
Δmvv/Δt=Δmvv/Δt
(1/2)Δmvv/Δt=(1/2)Δmvv/Δt
(1/2)(Δmvv/Δt)=(1/2)(Δmvv/Δt)
(1/2)(Δmvv/Δt)=(1/2)(Δmvv/Δt)
(1/2)Δmvv/Δt=(1/2)Δmvv/Δt
Δmvv/Δt=Δmvv/Δt
(ΔFx/Δt)=(ΔFx/Δt)


(ΔFx/Δt)=(ΔFx/Δt)
(Δmax/Δt)=(Δmax/Δt)
Δ[m(Δv/Δt)x]/Δt=Δ[m(Δv/Δt)x]/Δt
Δ[mv(Δ/Δt)x]/Δt=Δ[mv(Δ/Δt)x]/Δt
Δ[mv(Δx/Δt)]/Δt=Δ[mv(Δx/Δt)]/Δt
Δ[mvv]/Δt=Δ[mvv]/Δt
Δ(mvv)/Δt=Δ(mvv)/Δt
Δmvv/Δt=Δmvv/Δt
(1/2)Δmvv/Δt=(1/2)Δmvv/Δt
(1/2)(Δmvv/Δt)=(1/2)(Δmvv/Δt)


(1/2)(Δmvv/Δt)=(1/2)(Δmvv/Δt)
(1/2)Δmvv/Δt=(1/2)Δmvv/Δt
Δmvv/Δt=Δmvv/Δt
Δ(mvv)/Δt=Δ(mvv)/Δt
Δ[mvv]/Δt=Δ[mvv]/Δt
Δ[mv(Δx/Δt)]/Δt=Δ[mv(Δx/Δt)]/Δt
Δ[mv(Δ/Δt)x]/Δt=Δ[mv(Δ/Δt)x]/Δt
Δ[m(Δv/Δt)x]/Δt=Δ[m(Δv/Δt)x]/Δt
(Δmax/Δt)=(Δmax/Δt)
(ΔFx/Δt)=(ΔFx/Δt)
ここまで


ここから
(ΔFx/Δt)=(ΔFx/Δt)
ΔFx/Δt=ΔFx/Δt
Δmvv/Δt=Δmvv/Δt
Δ(1/2)mvv/Δt=Δ(1/2)mvv/Δt
Δ(1/2)(mvv/Δt)=Δ(1/2)(mvv/Δt)
Δ(1/2)(mvv/Δt)=Δ(1/2)(mvv/Δt)
Δ(1/2)mvv/Δt=Δ(1/2)mvv/Δt
Δmvv/Δt=Δmvv/Δt
ΔFx/Δt=ΔFx/Δt
(ΔFx/Δt)=(ΔFx/Δt)


(ΔFx/Δt)=(ΔFx/Δt)
ΔFx/Δt=ΔFx/Δt
Δmax/Δt=Δmax/Δt
Δ[m(Δv/Δt)x]/Δt=Δ[m(Δv/Δt)x]/Δt
Δ[mv(Δ/Δt)x]/Δt=Δ[mv(Δ/Δt)x]/Δt
Δ[mv(Δx/Δt)]/Δt=Δ[mv(Δx/Δt)]/Δt
Δ[mvv]/Δt=Δ[mvv]/Δt
Δ(mvv)/Δt=Δ(mvv)/Δt
Δmvv/Δt=Δmvv/Δt
Δ(1/2)mvv/Δt=Δ(1/2)mvv/Δt
Δ(1/2)(mvv/Δt)=Δ(1/2)(mvv/Δt)


Δ(1/2)(mvv/Δt)=Δ(1/2)(mvv/Δt)
Δ(1/2)mvv/Δt=Δ(1/2)mvv/Δt
Δmvv/Δt=Δmvv/Δt
Δ(mvv)/Δt=Δ(mvv)/Δt
Δ[mvv]/Δt=Δ[mvv]/Δt
Δ[mv(Δx/Δt)]/Δt=Δ[mv(Δx/Δt)]/Δt
Δ[mv(Δ/Δt)x]/Δt=Δ[mv(Δ/Δt)x]/Δt
Δ[m(Δv/Δt)x]/Δt=Δ[m(Δv/Δt)x]/Δt
Δmax/Δt=Δmax/Δt
ΔFx/Δt=ΔFx/Δt
(ΔFx/Δt)=(ΔFx/Δt)
ここまで




ここから
(ΔFx)=(ΔFx)
Δmvv=Δmvv
(1/2)Δmvv=(1/2)Δmvv
(1/2)(Δmvv)=(1/2)(Δmvv)
(1/2)(Δmvv)=(1/2)(Δmvv)
(1/2)Δmvv=(1/2)Δmvv
Δmvv=Δmvv
(ΔFx)=(ΔFx)


(ΔFx)=(ΔFx)
(Δmax)=(Δmax)
Δ[m(Δv/Δt)x]=Δ[m(Δv/Δt)x]
Δ[mv(Δ/Δt)x]=Δ[mv(Δ/Δt)x]
Δ[mv(Δx/Δt)]=Δ[mv(Δx/Δt)]
Δ[mvv]=Δ[mvv]
Δ(mvv)=Δ(mvv)
(Δmvv)=(Δmvv)
[Δmvv]=[Δmvv]
(Δmvv)=(Δmvv)
Δmvv=Δmvv
(1/2)Δmvv=(1/2)Δmvv
(1/2)(Δmvv)=(1/2)(Δmvv)


(1/2)(Δmvv)=(1/2)(Δmvv)
(1/2)Δmvv=(1/2)Δmvv
Δmvv=Δmvv
(Δmvv)=(Δmvv)
[Δmvv]=[Δmvv]
(Δmvv)=(Δmvv)
Δ(mvv)=Δ(mvv)
Δ[mvv]=Δ[mvv]
Δ[mv(Δx/Δt)]=Δ[mv(Δx/Δt)]
Δ[mv(Δ/Δt)x]=Δ[mv(Δ/Δt)x]
Δ[m(Δv/Δt)x]=Δ[m(Δv/Δt)x]
(Δmax)=(Δmax)
(ΔFx)=(ΔFx)
ここまで


ここから
(ΔFx)=(ΔFx)
ΔFx=ΔFx
Δmvv=Δmvv
Δ(1/2)mvv=Δ(1/2)mvv
Δ(1/2)(mvv)=Δ(1/2)(mvv)
Δ(1/2)(mvv)=Δ(1/2)(mvv)
Δ(1/2)mvv=Δ(1/2)mvv
Δmvv=Δmvv
ΔFx=ΔFx
(ΔFx)=(ΔFx)


(ΔFx)=(ΔFx)
ΔFx=ΔFx
Δmax=Δmax
Δ[m(Δv/Δt)x]=Δ[m(Δv/Δt)x]
Δ[mv(Δ/Δt)x]=Δ[mv(Δ/Δt)x]
Δ[mv(Δx/Δt)]=Δ[mv(Δx/Δt)]
Δ[mvv]=Δ[mvv]
Δ(mvv)=Δ(mvv)
(Δmvv)=(Δmvv)
[Δmvv]=[Δmvv]
(Δmvv)=(Δmvv)
Δmvv=Δmvv
Δ(1/2)mvv=Δ(1/2)mvv
Δ(1/2)(mvv)=Δ(1/2)(mvv)


Δ(1/2)(mvv)=Δ(1/2)(mvv)
Δ(1/2)mvv=Δ(1/2)mvv
Δmvv=Δmvv
(Δmvv)=(Δmvv)
[Δmvv]=[Δmvv]
(Δmvv)=(Δmvv)
Δ(mvv)=Δ(mvv)
Δ[mvv]=Δ[mvv]
Δ[mv(Δx/Δt)]=Δ[mv(Δx/Δt)]
Δ[mv(Δ/Δt)x]=Δ[mv(Δ/Δt)x]
Δ[m(Δv/Δt)x]=Δ[m(Δv/Δt)x]
Δmax=Δmax
ΔFx=ΔFx
(ΔFx)=(ΔFx)
ここまで


ここから
(Fx)=(Fx)
(mvv)=(mvv)
(1/2)mvv=(1/2)mvv
(1/2)(mvv)=(1/2)(mvv)
(1/2)(mvv)=(1/2)(mvv)
(1/2)mvv=(1/2)mvv
(mvv)=(mvv)
(Fx)=(Fx)


(Fx)=(Fx)
(max)=(max)
[m(Δv/Δt)x]=[m(Δv/Δt)x]
[mv(Δ/Δt)x]=[mv(Δ/Δt)x]
[mv(Δx/Δt)]=[mv(Δx/Δt)]
[mvv]=[mvv]
(mvv)=(mvv)
[mvv]=[mvv]
(mvv)=(mvv)
mvv=mvv
mvv=mvv
(1/2)mvv=(1/2)mvv
(1/2)(mvv)=(1/2)(mvv)


(1/2)(mvv)=(1/2)(mvv)
(1/2)mvv=(1/2)mvv
mvv=mvv
mvv=mvv
(mvv)=(mvv)
[mvv]=[mvv]
(mvv)=(mvv)
[mvv]=[mvv]
[mv(Δx/Δt)]=[mv(Δx/Δt)]
[mv(Δ/Δt)x]=[mv(Δ/Δt)x]
[m(Δv/Δt)x]=[m(Δv/Δt)x]
(max)=(max)
(Fx)=(Fx)
ここまで


ここから
(Fx)=(Fx)
Fx=Fx
mvv=mvv
(1/2)mvv=(1/2)mvv
(1/2)(mvv)=(1/2)(mvv)
(1/2)(mvv)=(1/2)(mvv)
(1/2)mvv=(1/2)mvv
mvv=mvv
Fx=Fx
(Fx)=(Fx)


(Fx)=(Fx)
Fx=Fx
max=max
m(Δv/Δt)x=m(Δv/Δt)x
mv(Δ/Δt)x=mv(Δ/Δt)x
mv(Δx/Δt)=mv(Δx/Δt)
mvv=mvv
mvv=mvv
(1/2)mvv=(1/2)mvv
(1/2)(mvv)=(1/2)(mvv)


(1/2)(mvv)=(1/2)(mvv)
(1/2)mvv=(1/2)mvv
mvv=mvv
mvv=mvv
mv(Δx/Δt)=mv(Δx/Δt)
mv(Δ/Δt)x=mv(Δ/Δt)x
m(Δv/Δt)x=m(Δv/Δt)x
max=max
Fx=Fx
(Fx)=(Fx)
ここまで






積の微分法則
せきのびぶんほうそく
Product Rule
部分積分
ぶぶんせきぶん
Integration By Parts
ここから
mvv
(mvv)'=(mvv)'
(Δmvv/Δt)=(Δmvv/Δt)
(Δmvv)=(Δmvv)
(mvv)=(mvv)


mvv
(mvv)'=(mvv)'
(Δmvv/Δt)=(Δmvv/Δt)
Δmvv/Δt=Δmvv/Δt
(Δmvv)=(Δmvv)
Δmvv=Δmvv
(mvv)=(mvv)
mvv=mvv


Fvcosθ=Fvcosθ
Fv=Fv
F(Δr/Δt)=F(Δr/Δt)
(ΔFr/Δt)=(ΔFr/Δt)
(Δmar/Δt)=(Δmar/Δt)
[Δmar/Δt]=[Δmar/Δt]
[Δm(Δv/Δt)r/Δt]=[Δm(Δv/Δt)r/Δt]
[Δmv(Δ/Δt)r/Δt]=[Δmv(Δ/Δt)r/Δt]
[Δmv(Δr/Δt)/Δt]=[Δmv(Δr/Δt)/Δt]
[Δmvv/Δt]=[Δmvv/Δt]
(Δmvv/Δt)=(Δmvv/Δt)
(mvv)'(t)=(mvv)'(t)
(mvv)'=(mvv)'
(mvv)'(t)=(mvv)'(t)
(Δmvv/Δt)=(Δmvv/Δt)
(Δmvv)=(Δmvv)
(ΣΔmvv)=(ΣΔmvv)
(mvv)=(mvv)


Fvcosθ=Fvcosθ
Fv=Fv
F(Δr/Δt)=F(Δr/Δt)
(ΔFr/Δt)=(ΔFr/Δt)
(Δmar/Δt)=(Δmar/Δt)
[Δmar/Δt]=[Δmar/Δt]
[Δm(Δv/Δt)r/Δt]=[Δm(Δv/Δt)r/Δt] [Δmv(Δ/Δt)r/Δt]=[Δmv(Δ/Δt)r/Δt]
[Δmv(Δr/Δt)/Δt]=[Δmv(Δr/Δt)/Δt]
[Δmvv/Δt]=[Δmvv/Δt]
(Δmvv/Δt)=(Δmvv/Δt)
(mvv)'(t)=(mvv)'(t)
(mvv)'=(mvv)'
(mvv)'(t)=(mvv)'(t)
(Δmvv/Δt)=(Δmvv/Δt)
Δmvv/Δt=Δmvv/Δt
(Δmvv)=(Δmvv)
Δmvv=Δmvv
(ΣΔmvv)=(ΣΔmvv)
ΣΔmvv=ΣΔmvv
(mvv)=(mvv)
mvv=mvv


ここまで



ここから
(mvv)'=(mvv)'
(1/2)(mvv)'=(1/2)(mvv)'
(Fx)'=(Fx)'
(1/2)(mvv)'=(1/2)(mvv)'
(mvv)'=(mvv)'


(mvv)'=(mvv)'
(1/2)(mvv)'=(1/2)(mvv)'
(mvv)'=(mvv)'
[mvv]'=[mvv]'
[mv(Δx/Δt)]'=[mv(Δx/Δt)]'
[mv(Δ/Δt)x]'=[mv(Δ/Δt)x]'
[m(Δv/Δt)x]'=[m(Δv/Δt)x]'
[max]'=[max]'
(max)'=(max)'
(Fx)'=(Fx)'


(Fx)'=(Fx)'
(max)'=(max)'
[max]'=[max]'
[m(Δv/Δt)x]'=[m(Δv/Δt)x]'
[mv(Δ/Δt)x]'=[mv(Δ/Δt)x]'
[mv(Δx/Δt)]'=[mv(Δx/Δt)]'
[mvv]'=[mvv]'
(mvv)'=(mvv)'
(1/2)(mvv)'=(1/2)(mvv)'
(mvv)'=(mvv)'
ここまで


ここから
(Δmvv/Δt)=(Δmvv/Δt)
(1/2)(Δmvv/Δt)=(1/2)(Δmvv/Δt)
(1/2)Δmvv/Δt=(1/2)Δmvv/Δt
(ΔFx/Δt)=(ΔFx/Δt)
(1/2)Δmvv/Δt=(1/2)Δmvv/Δt
(1/2)(Δmvv/Δt)=(1/2)(Δmvv/Δt)
(Δmvv/Δt)=(Δmvv/Δt)


(Δmvv/Δt)=(Δmvv/Δt)
(1/2)(Δmvv/Δt)=(1/2)(Δmvv/Δt)
(1/2)Δmvv/Δt=(1/2)Δmvv/Δt
Δmvv/Δt=Δmvv/Δt
Δ(mvv)/Δt=Δ(mvv)/Δt
Δ[mvv]/Δt=Δ[mvv]/Δt
Δ[mv(Δx/Δt)]/Δt=Δ[mv(Δx/Δt)]/Δt
Δ[mv(Δ/Δt)x]/Δt=Δ[mv(Δ/Δt)x]/Δt
Δ[m(Δv/Δt)x]/Δt=Δ[m(Δv/Δt)x]/Δt
(Δmax/Δt)=(Δmax/Δt)
(ΔFx/Δt)=(ΔFx/Δt)


(ΔFx/Δt)=(ΔFx/Δt)
(Δmax/Δt)=(Δmax/Δt)
Δ[m(Δv/Δt)x]/Δt=Δ[m(Δv/Δt)x]/Δt
Δ[mv(Δ/Δt)x]/Δt=Δ[mv(Δ/Δt)x]/Δt
Δ[mv(Δx/Δt)]/Δt=Δ[mv(Δx/Δt)]/Δt
Δ[mvv]/Δt=Δ[mvv]/Δt
Δ(mvv)/Δt=Δ(mvv)/Δt
Δmvv/Δt=Δmvv/Δt
(1/2)Δmvv/Δt=(1/2)Δmvv/Δt
(1/2)(Δmvv/Δt)=(1/2)(Δmvv/Δt)
(Δmvv/Δt)=(Δmvv/Δt)
ここまで


ここから
(Δmvv/Δt)=(Δmvv/Δt)
Δmvv/Δt=Δmvv/Δt
(1/2)Δmvv/Δt=(1/2)Δmvv/Δt
ΔFx/Δt=ΔFx/Δt
(ΔFx/Δt)=(ΔFx/Δt)
ΔFx/Δt=ΔFx/Δt
(1/2)Δmvv/Δt=(1/2)Δmvv/Δt
Δmvv/Δt=Δmvv/Δt
(Δmvv/Δt)=(Δmvv/Δt)


(Δmvv/Δt)=(Δmvv/Δt)
Δmvv/Δt=Δmvv/Δt
(1/2)Δmvv/Δt=(1/2)Δmvv/Δt
Δmvv/Δt=Δmvv/Δt
Δ(mvv)/Δt=Δ(mvv)/Δt
Δ[mvv]/Δt=Δ[mvv]/Δt
Δ[mv(Δx/Δt)]/Δt=Δ[mv(Δx/Δt)]/Δt
Δ[mv(Δ/Δt)x]/Δt=Δ[mv(Δ/Δt)x]/Δt
Δ[m(Δv/Δt)x]/Δt=Δ[m(Δv/Δt)x]/Δt
Δmax/Δt=Δmax/Δt
ΔFx/Δt=ΔFx/Δt
(ΔFx/Δt)=(ΔFx/Δt)


(ΔFx/Δt)=(ΔFx/Δt)
ΔFx/Δt=ΔFx/Δt
Δmax/Δt=Δmax/Δt
Δ[m(Δv/Δt)x]/Δt=Δ[m(Δv/Δt)x]/Δt
Δ[mv(Δ/Δt)x]/Δt=Δ[mv(Δ/Δt)x]/Δt
Δ[mv(Δx/Δt)]/Δt=Δ[mv(Δx/Δt)]/Δt
Δ[mvv]/Δt=Δ[mvv]/Δt
Δ(mvv)/Δt=Δ(mvv)/Δt
Δmvv/Δt=Δmvv/Δt
(1/2)Δmvv/Δt=(1/2)Δmvv/Δt
Δmvv/Δt=Δmvv/Δt
(Δmvv/Δt)=(Δmvv/Δt)
ここまで


ここから
(Δmvv/Δt)=(Δmvv/Δt)
Δ(1/2)(mvv/Δt)=Δ(1/2)(mvv/Δt)
Δ(1/2)mvv/Δt=Δ(1/2)mvv/Δt
(ΔFx/Δt)=(ΔFx/Δt)
Δ(1/2)mvv/Δt=Δ(1/2)mvv/Δt
Δ(1/2)(mvv/Δt)=Δ(1/2)(mvv/Δt)
(Δmvv/Δt)=(Δmvv/Δt)


(Δmvv/Δt)=(Δmvv/Δt)
Δ(1/2)(mvv/Δt)=Δ(1/2)(mvv/Δt)
Δ(1/2)mvv/Δt=Δ(1/2)mvv/Δt
Δmvv/Δt=Δmvv/Δt
Δ(mvv)/Δt=Δ(mvv)/Δt
Δ[mvv]/Δt=Δ[mvv]/Δt
Δ[mv(Δx/Δt)]/Δt=Δ[mv(Δx/Δt)]/Δt
Δ[mv(Δ/Δt)x]/Δt=Δ[mv(Δ/Δt)x]/Δt
Δ[m(Δv/Δt)x]/Δt=Δ[m(Δv/Δt)x]/Δt
(Δmax/Δt)=(Δmax/Δt)
(ΔFx/Δt)=(ΔFx/Δt)


(ΔFx/Δt)=(ΔFx/Δt)
(Δmax/Δt)=(Δmax/Δt)
Δ[m(Δv/Δt)x]/Δt=Δ[m(Δv/Δt)x]/Δt
Δ[mv(Δ/Δt)x]/Δt=Δ[mv(Δ/Δt)x]/Δt
Δ[mv(Δx/Δt)]/Δt=Δ[mv(Δx/Δt)]/Δt
Δ[mvv]/Δt=Δ[mvv]/Δt
Δ(mvv)/Δt=Δ(mvv)/Δt
Δmvv/Δt=Δmvv/Δt
Δ(1/2)mvv/Δt=Δ(1/2)mvv/Δt
Δ(1/2)(mvv/Δt)=Δ(1/2)(mvv/Δt)
(Δmvv/Δt)=(Δmvv/Δt)
ここまで



ここから
(Δmvv/Δt)=(Δmvv/Δt)
Δmvv/Δt=Δmvv/Δt
Δ(1/2)(mvv/Δt)=Δ(1/2)(mvv/Δt)
Δ(1/2)mvv/Δt=Δ(1/2)mvv/Δt
ΔFx/Δt=ΔFx/Δt
(ΔFx/Δt)=(ΔFx/Δt)
ΔFx/Δt=ΔFx/Δt
Δ(1/2)mvv/Δt=Δ(1/2)mvv/Δt
Δ(1/2)(mvv/Δt)=Δ(1/2)(mvv/Δt)
Δmvv/Δt=Δmvv/Δt
(Δmvv/Δt)=(Δmvv/Δt)


(Δmvv/Δt)=(Δmvv/Δt)
Δmvv/Δt=Δmvv/Δt
Δ(1/2)(mvv/Δt)=Δ(1/2)(mvv/Δt)
Δ(1/2)mvv/Δt=Δ(1/2)mvv/Δt
Δmvv/Δt=Δmvv/Δt
Δ(mvv)/Δt=Δ(mvv)/Δt
Δ[mvv]/Δt=Δ[mvv]/Δt
Δ[mv(Δx/Δt)]/Δt=Δ[mv(Δx/Δt)]/Δt
Δ[mv(Δ/Δt)x]/Δt=Δ[mv(Δ/Δt)x]/Δt
Δ[m(Δv/Δt)x]/Δt=Δ[m(Δv/Δt)x]/Δt
Δmax/Δt=Δmax/Δt
ΔFx/Δt=ΔFx/Δt
(ΔFx/Δt)=(ΔFx/Δt)


(ΔFx/Δt)=(ΔFx/Δt)
ΔFx/Δt=ΔFx/Δt
Δmax/Δt=Δmax/Δt
Δ[m(Δv/Δt)x]/Δt=Δ[m(Δv/Δt)x]/Δt
Δ[mv(Δ/Δt)x]/Δt=Δ[mv(Δ/Δt)x]/Δt
Δ[mv(Δx/Δt)]/Δt=Δ[mv(Δx/Δt)]/Δt
Δ[mvv]/Δt=Δ[mvv]/Δt
Δ(mvv)/Δt=Δ(mvv)/Δt
Δmvv/Δt=Δmvv/Δt
Δ(1/2)mvv/Δt=Δ(1/2)mvv/Δt
Δ(1/2)(mvv/Δt)=Δ(1/2)(mvv/Δt)
Δmvv/Δt=Δmvv/Δt
(Δmvv/Δt)=(Δmvv/Δt)
ここまで



ここから
(Δmvv)=(Δmvv)
(1/2)(Δmvv)=(1/2)(Δmvv)
(1/2)Δmvv=(1/2)Δmvv
(ΔFx)=(ΔFx)
Δ(1/2)mvv=Δ(1/2)mvv
Δ(1/2)(mvv)=Δ(1/2)(mvv)
Δ(mvv)=Δ(mvv)
(Δmvv)=(Δmvv)


(Δmvv)=(Δmvv)
(1/2)(Δmvv)=(1/2)(Δmvv)
(1/2)Δmvv=(1/2)Δmvv
Δmvv=Δmvv
(Δmvv)=(Δmvv)
[Δmvv]=[Δmvv]
(Δmvv)=(Δmvv)
Δ(mvv)=Δ(mvv)
Δ[mvv]=Δ[mvv]
Δ[mv(Δx/Δt)]=Δ[mv(Δx/Δt)]
Δ[mv(Δ/Δt)x]=Δ[mv(Δ/Δt)x]
Δ[m(Δv/Δt)x]=Δ[m(Δv/Δt)x]
(Δmax)=(Δmax)
(ΔFx)=(ΔFx)


(ΔFx)=(ΔFx)
(Δmax)=(Δmax)
Δ[m(Δv/Δt)x]=Δ[m(Δv/Δt)x]
Δ[mv(Δ/Δt)x]=Δ[mv(Δ/Δt)x]
Δ[mv(Δx/Δt)]=Δ[mv(Δx/Δt)]
Δ[mvv]=Δ[mvv]
Δ(mvv)=Δ(mvv)
(Δmvv)=(Δmvv)
[Δmvv]=[Δmvv]
(Δmvv)=(Δmvv)
Δmvv=Δmvv
Δ(1/2)mvv=Δ(1/2)mvv
Δ(1/2)(mvv)=Δ(1/2)(mvv)
Δ(mvv)=Δ(mvv)
(Δmvv)=(Δmvv)
ここまで


ここから
(Δmvv)=(Δmvv)
Δmvv=Δmvv
(1/2)Δmvv=(1/2)Δmvv
ΔFx=ΔFx
(ΔFx)=(ΔFx)
ΔFx=ΔFx
Δ(1/2)mvv=Δ(1/2)mvv
Δ(1/2)(mvv)=Δ(1/2)(mvv)
Δ(mvv)=Δ(mvv)
(Δmvv)=(Δmvv)


(Δmvv)=(Δmvv)
(1/2)(Δmvv)=(1/2)(Δmvv)
(1/2)Δmvv=(1/2)Δmvv
Δmvv=Δmvv
(Δmvv)=(Δmvv)
[Δmvv]=[Δmvv]
(Δmvv)=(Δmvv)
Δ(mvv)=Δ(mvv)
Δ[mvv]=Δ[mvv]
Δ[mv(Δx/Δt)]=Δ[mv(Δx/Δt)]
Δ[mv(Δ/Δt)x]=Δ[mv(Δ/Δt)x]
Δ[m(Δv/Δt)x]=Δ[m(Δv/Δt)x]
Δmax=Δmax
ΔFx=ΔFx
(ΔFx)=(ΔFx)


(ΔFx)=(ΔFx)
ΔFx=ΔFx
Δmax=Δmax
Δ[m(Δv/Δt)x]=Δ[m(Δv/Δt)x]
Δ[mv(Δ/Δt)x]=Δ[mv(Δ/Δt)x]
Δ[mv(Δx/Δt)]=Δ[mv(Δx/Δt)]
Δ[mvv]=Δ[mvv]
Δ(mvv)=Δ(mvv)
(Δmvv)=(Δmvv)
[Δmvv]=[Δmvv]
(Δmvv)=(Δmvv)
Δmvv=Δmvv
Δ(1/2)mvv=Δ(1/2)mvv
Δ(1/2)(mvv)=Δ(1/2)(mvv)
Δ(mvv)=Δ(mvv)
(Δmvv)=(Δmvv)
ここまで



ここから
(mvv)=(mvv)
(1/2)(mvv)=(1/2)(mvv)
(1/2)mvv=(1/2)mvv
(Fx)=(Fx)
(1/2)mvv=(1/2)mvv
(1/2)(mvv)=(1/2)(mvv)
(mvv)=(mvv)


(mvv)=(mvv)
(1/2)(mvv)=(1/2)(mvv)
(1/2)mvv=(1/2)mvv
mvv=mvv
mvv=mvv
(mvv)=(mvv)
[mvv]=[mvv]
(mvv)=(mvv)
[mvv]=[mvv]
[mv(Δx/Δt)]=[mv(Δx/Δt)]
[mv(Δ/Δt)x]=[mv(Δ/Δt)x]
[m(Δv/Δt)x]=[m(Δv/Δt)x]
(max)=(max)
(Fx)=(Fx)


(Fx)=(Fx)
(max)=(max)
[m(Δv/Δt)x]=[m(Δv/Δt)x]
[mv(Δ/Δt)x]=[mv(Δ/Δt)x]
[mv(Δx/Δt)]=[mv(Δx/Δt)]
[mvv]=[mvv]
(mvv)=(mvv)
[mvv]=[mvv]
(mvv)=(mvv)
mvv=mvv
(1/2)mvv=(1/2)mvv
(1/2)(mvv)=(1/2)(mvv)
(mvv)=(mvv)
ここまで



積の微分法則
せきのびぶんほうそく
Product Rule
部分積分
ぶぶんせきぶん
Integration By Parts
ここから
Fx
(Fx)'=(Fx)'
(fg)'=(fg)'
F'x+Fv=F'x+Fv
f'g+fg'=f'g+fg'
(Fx)'=F'x+Fv
(fg)'=f'g+fg'


(ΔFx/Δt)=(ΔFx/Δt)
(Δfg/Δt)=(Δfg/Δt)
F'x+Fv=F'x+Fv
f'g+fg'=f'g+fg'
(ΔFx/Δt)=F'x+Fv
(Δfg/Δt)=f'g+fg'


(ΔFx/Δt)=(ΔFx/Δt)
ΔFx/Δt=ΔFx/Δt
(Δfg/Δt)=(Δfg/Δt)
Δfg/Δt=Δfg/Δt
F'x+Fv=F'x+Fv
f'g+fg'=f'g+fg'
(ΔFx/Δt)=F'x+Fv
ΔFx/Δt=F'x+Fv
(Δfg/Δt)=f'g+fg'
Δfg/Δt=f'g+fg'


ΔFx/Δt=ΔFx/Δt
Δfg/Δt=Δfg/Δt
F'x+Fv=F'x+Fv
f'g+fg'=f'g+fg'
ΔFx/Δt=F'x+Fv
Δfg/Δt=f'g+fg'


(ΔFx)=(ΔFx)
(Δfg)=(Δfg)
F'xΔt+FvΔt=F'xΔt+FvΔt
f'gΔt+fg'Δt=f'gΔt+fg'Δt
(ΔFx)=F'xΔt+FvΔt
(Δfg)=f'gΔt+fg'Δt


(ΔFx)=(ΔFx)
ΔFx=ΔFx
(Δfg)=(Δfg)
Δfg=Δfg
F'xΔt+FvΔt=F'xΔt+FvΔt
f'gΔt+fg'Δt=f'gΔt+fg'Δt
(ΔFx)=F'xΔt+FvΔt
ΔFx=F'xΔt+FvΔt
(Δfg)=f'gΔt+fg'Δt
Δfg=f'gΔt+fg'Δt


ΔFx=ΔFx
Δfg=Δfg
F'xΔt+FvΔt=F'xΔt+FvΔt
f'gΔt+fg'Δt=f'gΔt+fg'Δt
ΔFx=F'xΔt+FvΔt
Δfg=f'gΔt+fg'Δt


(Fx)=(Fx)
Fx=Fx
(fg)=(fg)
fg=fg
ΣF'xΔt+ΣFvΔt=ΣF'xΔt+ΣFvΔt
Σf'gΔt+fg'Δt=Σf'gΔt+Σfg'Δt
(Fx)=ΣF'xΔt+ΣFvΔt
Fx=ΣF'xΔt+ΣFvΔt
(fg)=Σf'gΔt+Σfg'Δt
fg=Σf'gΔt+Σfg'Δt


Fx=Fx
fg=fg
ΣF'xΔt+ΣFvΔt=ΣF'xΔt+ΣFvΔt
Σf'gΔt+fg'Δt=Σf'gΔt+Σfg'Δt
Fx=ΣF'xΔt+ΣFvΔt
fg=Σf'gΔt+Σfg'Δt
ここまで




ここから
(Fx)'=(Fx)'
(fg)'=(fg)'
F'x+Fv=F'x+Fv
f'g+fg'=f'g+fg'
(Fx)'=F'x+Fv
(fg)'=f'g+fg'


(ΔFx/Δt)=(ΔFx/Δt)
(Δfg/Δt)=(Δfg/Δt)
F'x+Fv=F'x+Fv
f'g+fg'=f'g+fg'
(ΔFx/Δt)=F'x+Fv
(Δfg/Δt)=f'g+fg'


(ΔFx/Δt)=(ΔFx/Δt)
ΔFx/Δt=ΔFx/Δt
(Δfg/Δt)=(Δfg/Δt)
Δfg/Δt=Δfg/Δt
F'x+Fv=F'x+Fv
f'g+fg'=f'g+fg'
(ΔFx/Δt)=F'x+Fv
ΔFx/Δt=F'x+Fv
(Δfg/Δt)=f'g+fg'
Δfg/Δt=f'g+fg'
ここまで


ここから
Fvcosθ=Fvcosθ
Fv=Fv
F(Δx/Δt)=F(Δx/Δt)
(ΔFx/Δt)=(ΔFx/Δt)
(Fx)'(t)=(Fx)'(t)
(Fx)'=(Fx)'
(fg)'=(fg)'


Fvcosθ=Fvcosθ
Fv=Fv
F(Δx/Δt)=F(Δx/Δt)
(ΔFx/Δt)=(ΔFx/Δt)
(Fx)'(t)=(Fx)'(t)
(Fx)'=(Fx)'
(Fx)'(t)=(Fx)'(t)
(ΔFx/Δt)=(ΔFx/Δt)
(Δfg/Δt)=(Δfg/Δt)


Fvcosθ=Fvcosθ
Fv=Fv
2Fv=2Fv
Fv+Fv=Fv+Fv
F(Δx/Δt)+Fv=F(Δx/Δt)+Fv
(ΔFx/Δt)+Fv=(ΔFx/Δt)+Fv
(ΔF/Δt)x+Fv=(ΔF/Δt)x+Fv
F'(t)x+Fv=F'(t)x+Fv
F'x+Fv=F'x+Fv
f'g+fg'=f'g+fg'


(Fx)'=(Fx)'
F'x+Fv=F'x+Fv
(Fx)'=F'x+Fv
(fg)'=f'g+fg'


(ΔFx/Δt)=(ΔFx/Δt)
(Δfg/Δt)=(Δfg/Δt)
F'x+Fv=F'x+Fv
f'g+fg'=f'g+fg'
(ΔFx/Δt)=F'x+Fv
(Δfg/Δt)=f'g+fg'


(ΔFx/Δt)=(ΔFx/Δt)
ΔFx/Δt=ΔFx/Δt
(Δfg/Δt)=(Δfg/Δt)
Δfg/Δt=Δfg/Δt
F'x+Fv=F'x+Fv
f'g+fg'=f'g+fg'
(ΔFx/Δt)=F'x+Fv
ΔFx/Δt=F'x+Fv
(Δfg/Δt)=f'g+fg'
Δfg/Δt=f'g+fg'
ここまで



ここから
ΔFx/Δt=ΔFx/Δt
Δfg/Δt=Δfg/Δt
F'x+Fv=F'x+Fv
f'g+fg'=f'g+fg'
ΔFx/Δt=F'x+Fv
Δfg/Δt=f'g+fg'


Fvcosθ=Fvcosθ
Fv=Fv
F(Δx/Δt)=F(Δx/Δt)
(ΔFx/Δt)=(ΔFx/Δt)
(Fx)'(t)=(Fx)'(t)
(Fx)'=(Fx)'
(Fx)'(t)=(Fx)'(t)
(ΔFx/Δt)=(ΔFx/Δt)
ΔFx/Δt=ΔFx/Δt
Δfg/Δt=Δfg/Δt


Fvcosθ=Fvcosθ
Fv=Fv
2Fv=2Fv
Fv+Fv=Fv+Fv
F(Δx/Δt)+Fv=F(Δx/Δt)+Fv
(ΔFx/Δt)+Fv=(ΔFx/Δt)+Fv
(ΔF/Δt)x+Fv=(ΔF/Δt)x+Fv
F'(t)x+Fv=F'(t)x+Fv
F'x+Fv=F'x+Fv
f'g+fg'=f'g+fg'


ΔFx/Δt=ΔFx/Δt
F'x+Fv=F'x+Fv
ΔFx/Δt=F'x+Fv
Δfg/Δt=f'g+fg'
ここまで


ここから
(ΔFx)=(ΔFx)
(Δfg)=(Δfg)
F'xΔt+FvΔt=F'xΔt+FvΔt
f'gΔt+fg'Δt=f'gΔt+fg'Δt
(ΔFx)=F'xΔt+FvΔt
(Δfg)=f'gΔt+fg'Δt


(ΔFx)=(ΔFx)
ΔFx=ΔFx
(Δfg)=(Δfg)
Δfg=Δfg
F'xΔt+FvΔt=F'xΔt+FvΔt
f'gΔt+fg'Δt=f'gΔt+fg'Δt
(ΔFx)=F'xΔt+FvΔt
ΔFx=F'xΔt+FvΔt
(Δfg)=f'gΔt+fg'Δt
Δfg=f'gΔt+fg'Δt


Fvcosθ=Fvcosθ
Fv=Fv
F(Δx/Δt)=F(Δx/Δt)
(ΔFx/Δt)=(ΔFx/Δt)
(Fx)'(t)=(Fx)'(t)
(Fx)'=(Fx)'
(Fx)'(t)=(Fx)'(t)
(ΔFx/Δt)=(ΔFx/Δt)
(ΔFx)=(ΔFx)
(Δfg)=(Δfg)


Fvcosθ=Fvcosθ
Fv=Fv
F(Δx/Δt)=F(Δx/Δt)
(ΔFx/Δt)=(ΔFx/Δt)
(Fx)'(t)=(Fx)'(t)
(Fx)'=(Fx)'
(Fx)'(t)=(Fx)'(t)
(ΔFx/Δt)=(ΔFx/Δt)
ΔFx/Δt=ΔFx/Δt
(ΔFx)=(ΔFx)
ΔFx=ΔFx
(Δfg)=(Δfg)
Δfg=Δfg


Fvcosθ=Fvcosθ
Fv=Fv
2Fv=2Fv
Fv+Fv=Fv+Fv
F(Δx/Δt)+Fv=F(Δx/Δt)+Fv
(ΔFx/Δt)+Fv=(ΔFx/Δt)+Fv
(ΔF/Δt)x+Fv=(ΔF/Δt)x+Fv
F'(t)x+Fv=F'(t)x+Fv
F'x+Fv=F'x+Fv
F'xΔt+FvΔt=F'xΔt+FvΔt
f'gΔt+fg'Δt=f'gΔt+fg'Δt


(ΔFx)=(ΔFx)
(Δfg)=(Δfg)
F'xΔt+FvΔt=F'xΔt+FvΔt
f'gΔt+fg'Δt=f'gΔt+fg'Δt
(ΔFx)=F'xΔt+FvΔt
(Δfg)=f'gΔt+fg'Δt


(ΔFx)=(ΔFx)
ΔFx=ΔFx
(Δfg)=(Δfg)
Δfg=Δfg
F'xΔt+FvΔt=F'xΔt+FvΔt
f'gΔt+fg'Δt=f'gΔt+fg'Δt
(ΔFx)=F'xΔt+FvΔt
ΔFx=F'xΔt+FvΔt
(Δfg)=f'gΔt+fg'Δt
Δfg=f'gΔt+fg'Δt
ここまで



ここから
ΔFx=ΔFx
Δfg=Δfg
F'xΔt+FvΔt=F'xΔt+FvΔt
f'gΔt+fg'Δt=f'gΔt+fg'Δt
ΔFx=F'xΔt+FvΔt
Δfg=f'gΔt+fg'Δt


Fvcosθ=Fvcosθ
Fv=Fv
F(Δx/Δt)=F(Δx/Δt)
(ΔFx/Δt)=(ΔFx/Δt)
(Fx)'(t)=(Fx)'(t)
(Fx)'=(Fx)'
(Fx)'(t)=(Fx)'(t)
(ΔFx/Δt)=(ΔFx/Δt)
ΔFx/Δt=ΔFx/Δt
ΔFx=ΔFx
Δfg=Δfg


Fvcosθ=Fvcosθ
Fv=Fv
2Fv=2Fv
Fv+Fv=Fv+Fv
F(Δx/Δt)+Fv=F(Δx/Δt)+Fv
(ΔFx/Δt)+Fv=(ΔFx/Δt)+Fv
(ΔF/Δt)x+Fv=(ΔF/Δt)x+Fv
F'(t)x+Fv=F'(t)x+Fv
F'x+Fv=F'x+Fv
F'xΔt+FvΔt=F'xΔt+FvΔt
f'gΔt+fg'Δt=f'gΔt+fg'Δt


ΔFx=ΔFx
Δfg=Δfg
F'xΔt+FvΔt=F'xΔt+FvΔt
f'gΔt+fg'Δt=f'gΔt+fg'Δt
ΔFx=F'xΔt+FvΔt
Δfg=f'gΔt+fg'Δt
ここまで


ここから
(Fx)=(Fx)
(fg)=(fg)
ΣF'xΔt+ΣFvΔt=ΣF'xΔt+ΣFvΔt
Σf'gΔt+Σfg'Δt=Σf'gΔt+Σfg'Δt
(Fx)=ΣF'xΔt+ΣFvΔt
(fg)=Σf'gΔt+Σfg'Δt


(Fx)=(Fx)
Fx=Fx
(fg)=(fg)
fg=fg
ΣF'xΔt+ΣFvΔt=ΣF'xΔt+ΣFvΔt
Σf'gΔt+Σfg'Δt=Σf'gΔt+Σfg'Δt
(Fx)=ΣF'xΔt+ΣFvΔt
Fx=ΣF'xΔt+ΣFvΔt
(fg)=Σf'gΔt+Σfg'Δt
fg=Σf'gΔt+Σfg'Δt


Fvcosθ=Fvcosθ
Fv=Fv
F(Δx/Δt)=F(Δx/Δt)
(ΔFx/Δt)=(ΔFx/Δt)
(Fx)'(t)=(Fx)'(t)
(Fx)'=(Fx)'
(Fx)'(t)=(Fx)'(t)
(ΔFx/Δt)=(ΔFx/Δt)
(ΔFx)=(ΔFx)
(ΣΔFx)=(ΣΔFx)
(Fx)=(Fx)
(fg)=(fg)


Fvcosθ=Fvcosθ
Fv=Fv
F(Δx/Δt)=F(Δx/Δt)
(ΔFx/Δt)=(ΔFx/Δt)
(Fx)'(t)=(Fx)'(t)
(Fx)'=(Fx)'
(Fx)'(t)=(Fx)'(t)
(ΔFx/Δt)=(ΔFx/Δt)
ΔFx/Δt=ΔFx/Δt
(ΔFx)=(ΔFx)
ΔFx=ΔFx
(ΣΔFx)=(ΣΔFx)
ΣΔFx=ΣΔFx
(Fx)=(Fx)
Fx=Fx
(fg)=(fg)
fg=fg


Fvcosθ=Fvcosθ
Fv=Fv
2Fv=2Fv
Fv+Fv=Fv+Fv
F(Δx/Δt)+Fv=F(Δx/Δt)+Fv
(ΔFx/Δt)+Fv=(ΔFx/Δt)+Fv
(ΔF/Δt)x+Fv=(ΔF/Δt)x+Fv
F'(t)x+Fv=F'(t)x+Fv
F'x+Fv=F'x+Fv
ΣF'xΔt+ΣFvΔt=ΣF'xΔt+ΣFvΔt
Σf'gΔt+Σfg'Δt=Σf'gΔt+Σfg'Δt


(Fx)=(Fx)
(fg)=(fg)
ΣF'xΔt+ΣFvΔt=ΣF'xΔt+ΣFvΔt
Σf'gΔt+Σfg'Δt=Σf'gΔt+Σfg'Δt
(Fx)=ΣF'xΔt+ΣFvΔt
(fg)=Σf'gΔt+Σfg'Δt


(Fx)=(Fx)
Fx=Fx
(fg)=(fg)
fg=fg
ΣF'xΔt+ΣFvΔt=ΣF'xΔt+ΣFvΔt
Σf'gΔt+Σfg'Δt=Σf'gΔt+Σfg'Δt
(Fx)=ΣF'xΔt+ΣFvΔt
Fx=ΣF'xΔt+ΣFvΔt
(fg)=Σf'gΔt+Σfg'Δt
fg=Σf'gΔt+Σfg'Δt
ここまで


ここから
Fx=Fx
fg=fg
ΣF'xΔt+ΣFvΔt=ΣF'xΔt+ΣFvΔt
Σf'gΔt+Σfg'Δt=Σf'gΔt+Σfg'Δt
Fx=ΣF'xΔt+ΣFvΔt
fg=Σf'gΔt+Σfg'Δt


Fvcosθ=Fvcosθ
Fv=Fv
F(Δx/Δt)=F(Δx/Δt)
(ΔFx/Δt)=(ΔFx/Δt)
(Fx)'(t)=(Fx)'(t)
(Fx)'=(Fx)'
(Fx)'(t)=(Fx)'(t)
(ΔFx/Δt)=(ΔFx/Δt)
ΔFx/Δt=ΔFx/Δt
ΔFx=ΔFx
ΣΔFx=ΣΔFx
Fx=Fx
fg=fg


Fvcosθ=Fvcosθ
Fv=Fv
2Fv=2Fv
Fv+Fv=Fv+Fv
F(Δx/Δt)+Fv=F(Δx/Δt)+Fv
(ΔFx/Δt)+Fv=(ΔFx/Δt)+Fv
(ΔF/Δt)x+Fv=(ΔF/Δt)x+Fv
F'(t)x+Fv=F'(t)x+Fv
F'x+Fv=F'x+Fv
ΣF'xΔt+ΣFvΔt=ΣF'xΔt+ΣFvΔt
Σf'gΔt+Σfg'Δt=Σf'gΔt+Σfg'Δt


Fx=Fx
fg=fg
ΣF'xΔt+ΣFvΔt=ΣF'xΔt+ΣFvΔt
Σf'gΔt+Σfg'Δt=Σf'gΔt+Σfg'Δt
Fx=ΣF'xΔt+ΣFvΔt
fg=Σf'gΔt+Σfg'Δt
ここまで




積の微分法則
せきのびぶんほうそく
Product Rule
部分積分
ぶぶんせきぶん
Integration By Parts
ここから
mvv
(mvv)'=(mvv)'
(fg)'=(fg)'
mv'v+mvv'=mv'v+mvv'
f'g+fg'=f'g+fg'
(mvv)'=mv'v+mvv'
(fg)'=f'g+fg'


(Δmvv/Δt)=(Δmvv/Δt)
(Δfg/Δt)=(Δfg/Δt)
mv'v+mvv'=mv'v+mvv'
f'g+fg'=f'g+fg'
(Δmvv/Δt)=mv'v+mvv'
(Δfg/Δt)=f'g+fg'


(Δmvv/Δt)=(Δmvv/Δt)
Δmvv/Δt=Δmvv/Δt
(Δfg/Δt)=(Δfg/Δt)
Δfg/Δt=Δfg/Δt
mv'v+mvv'=mv'v+mvv'
f'g+fg'=f'g+fg'
(Δmvv/Δt)=mv'v+mvv'
Δmvv/Δt=mv'v+mvv'
(Δfg/Δt)=f'g+fg'
Δfg/Δt=f'g+fg'


Δmvv/Δt=Δmvv/Δt
Δfg/Δt=Δfg/Δt
mv'v+mvv'=mv'v+mvv'
f'g+fg'=f'g+fg'
Δmvv/Δt=mv'v+mvv'
Δfg/Δt=f'g+fg'


(Δmvv)=(Δmvv)
(Δfg)=(Δfg)
mv'vΔt+mvv'Δt=mv'vΔt+mvv'Δt
f'gΔt+fg'Δt=f'gΔt+fg'Δt
(Δmvv)=mv'vΔt+mvv'Δt
(Δfg)=f'gΔt+fg'Δt


(Δmvv)=(Δmvv)
Δmvv=Δmvv
(Δfg)=(Δfg)
Δfg=Δfg
mv'vΔt+mvv'Δt=mv'vΔt+mvv'Δt
f'gΔt+fg'Δt=f'gΔt+fg'Δt
(Δmvv)=mv'vΔt+mvv'Δt
Δmvv=mv'vΔt+mvv'Δt
(Δfg)=f'gΔt+fg'Δt
Δfg=f'gΔt+fg'Δt


Δmvv=Δmvv
Δfg=Δfg
mv'vΔt+mvv'Δt=mv'vΔt+mvv'Δt
f'gΔt+fg'Δt=f'gΔt+fg'Δt
Δmvv=mv'vΔt+mvv'Δt
Δfg=f'gΔt+fg'Δt


(mvv)=(mvv)
(fg)=(fg)
Σmv'vΔt+Σmvv'Δt=Σmv'vΔt+Σmvv'Δt
Σf'gΔt+Σfg'Δt=Σf'gΔt+Σfg'Δt
(mvv)=Σmv'vΔt+Σmvv'Δt
(fg)=Σf'gΔt+Σfg'Δt


(mvv)=(mvv)
mvv=mvv
(fg)=(fg)
fg=fg
Σmv'vΔt+Σmvv'Δt=Σmv'vΔt+Σmvv'Δt
Σf'gΔt+Σfg'Δt=Σf'gΔt+Σfg'Δt
(mvv)=Σmv'vΔt+Σmvv'Δt
mvv=Σmv'vΔt+Σmvv'Δt
(fg)=Σf'gΔt+Σfg'Δt
fg=Σf'gΔt+Σfg'Δt


mvv=mvv
fg=fg
Σmv'vΔt+Σmvv'Δt=Σmv'vΔt+Σmvv'Δt
Σf'gΔt+Σfg'Δt=Σf'gΔt+Σfg'Δt
mvv=Σmv'vΔt+Σmvv'Δt
fg=Σf'gΔt+Σfg'Δt
ここまで










ここから
(mvv)'=(mvv)'
(fg)'=(fg)'
mv'v+mvv'=mv'v+mvv'
f'g+fg'=f'g+fg'
(mvv)'=mv'v+mvv'
(fg)'=f'g+fg'


(Δmvv/Δt)=(Δmvv/Δt)
(Δfg/Δt)=(Δfg/Δt)
mv'v+mvv'=mv'v+mvv'
f'g+fg'=f'g+fg'


(Δmvv/Δt)=(Δmvv/Δt)
Δmvv/Δt=Δmvv/Δt
(Δfg/Δt)=(Δfg/Δt)
Δfg/Δt=Δfg/Δt
mv'v+mvv'=mv'v+mvv'
f'g+fg'=f'g+fg'


Fvcosθ=Fvcosθ
Fv=Fv
F(Δr/Δt)=F(Δr/Δt)
(ΔFr/Δt)=(ΔFr/Δt)
(Δmar/Δt)=(Δmar/Δt)
[Δmar/Δt]=[Δmar/Δt]
[Δm(Δv/Δt)r/Δt]=[Δm(Δv/Δt)r/Δt] [Δmv(Δ/Δt)r/Δt]=[Δmv(Δ/Δt)r/Δt] [Δmv(Δr/Δt)/Δt]=[Δmv(Δr/Δt)/Δt] [Δmvv/Δt]=[Δmvv/Δt]
(Δmvv/Δt)=(Δmvv/Δt)
(mvv)'(t)=(mvv)'(t)
(mvv)'=(mvv)'
(fg)'=(fg)'


Fvcosθ=Fvcosθ
Fv=Fv
F(Δr/Δt)=F(Δr/Δt)
(ΔFr/Δt)=(ΔFr/Δt)
(Δmar/Δt)=(Δmar/Δt)
[Δmar/Δt]=[Δmar/Δt]
[Δm(Δv/Δt)r/Δt]=[Δm(Δv/Δt)r/Δt] [Δmv(Δ/Δt)r/Δt]=[Δmv(Δ/Δt)r/Δt] [Δmv(Δr/Δt)/Δt]=[Δmv(Δr/Δt)/Δt]
[Δmvv/Δt]=[Δmvv/Δt]
(Δmvv/Δt)=(Δmvv/Δt)
(mvv)'(t)=(mvv)'(t)
(mvv)'=(mvv)'
(mvv)'(t)=(mvv)'(t)
(Δmvv/Δt)=(Δmvv/Δt)
(Δfg/Δt)=(Δfg/Δt)


Fvcosθ=Fvcosθ
Fv=Fv
F(Δr/Δt)=F(Δr/Δt)
(ΔFr/Δt)=(ΔFr/Δt)
(Δmar/Δt)=(Δmar/Δt)
[Δmar/Δt]=[Δmar/Δt]
[Δm(Δv/Δt)r/Δt]=[Δm(Δv/Δt)r/Δt] [Δmv(Δ/Δt)r/Δt]=[Δmv(Δ/Δt)r/Δt] [Δmv(Δr/Δt)/Δt]=[Δmv(Δr/Δt)/Δt]
[Δmvv/Δt]=[Δmvv/Δt]
(Δmvv/Δt)=(Δmvv/Δt)
Δmvv/Δt=Δmvv/Δt
(mvv)'(t)=(mvv)'(t)
(mvv)'=(mvv)'
(mvv)'(t)=(mvv)'(t)
(Δmvv/Δt)=(Δmvv/Δt)
Δmvv/Δt=Δmvv/Δt
(Δfg/Δt)=(Δfg/Δt)
Δfg/Δt=Δfg/Δt


Fvcosθ=Fvcosθ
Fv=Fv
2Fv=2Fv
2mav=2mav
mav+mav=mav+mav
mav+mva=mav+mva
m(Δv/Δt)v+mv(Δv/Δt)=m(Δv/Δt)v+mv(Δv/Δt)
mv'(t)v+mvv'(t)=mv'(t)v+mvv'(t)
mv'v+mvv'=mv'v+mvv'
f'g+fg'=f'g+fg'


(mvv)'=(mvv)'
2Fv=2Fv
(mvv)'=2Fv
(1/2)(mvv)'=Fv


(mvv)'=(mvv)'
(fg)'=(fg)'
mv'v+mvv'=mv'v+mvv'
f'g+fg'=f'g+fg'
(mvv)'=mv'v+mvv'
(fg)'=f'g+fg'


(Δmvv/Δt)=(Δmvv/Δt)
2Fv=2Fv
(Δmvv/Δt)=2Fv
(1/2)(Δmvv/Δt)=Fv


(Δmvv/Δt)=(Δmvv/Δt)
(Δmvv/Δt)=2Fv
Δmvv/Δt=2Fv
(1/2)Δmvv/Δt=Fv


(Δmvv/Δt)=(Δmvv/Δt)
2Fv=2Fv
(Δmvv/Δt)=2Fv
(1/2)(Δmvv/Δt)=Fv
Δ(1/2)(mvv/Δt)=Fv


(Δmvv/Δt)=(Δmvv/Δt)
2Fv=2Fv
(Δmvv/Δt)=2Fv
Δmvv/Δt=2Fv
(1/2)Δmvv/Δt=Fv
Δ(1/2)mvv/Δt=Fv


(Δmvv/Δt)=(Δmvv/Δt)
(Δfg/Δt)=(Δfg/Δt)
mv'v+mvv'=mv'v+mvv'
f'g+fg'=f'g+fg'
(Δmvv/Δt)=mv'v+mvv'
(Δfg/Δt)=f'g+fg'


(Δmvv/Δt)=(Δmvv/Δt)
Δmvv/Δt=Δmvv/Δt
(Δfg/Δt)=(Δfg/Δt)
Δfg/Δt=Δfg/Δt
mv'v+mvv'=mv'v+mvv'
f'g+fg'=f'g+fg'
(Δmvv/Δt)=mv'v+mvv'
Δmvv/Δt=mv'v+mvv'
(Δfg/Δt)=mv'v+mvv'
Δfg/Δt=f'g+fg'
ここまで


ここから
Δmvv/Δt=Δmvv/Δt
Δfg/Δt=Δfg/Δt
mv'v+mvv'=mv'v+mvv'
f'g+fg'=f'g+fg'


Fvcosθ=Fvcosθ
Fv=Fv
2Fv=2Fv
2mav=2mav
mav+mav=mav+mav
mav+mva=mav+mva
m(Δv/Δt)v+mv(Δv/Δt)=m(Δv/Δt)v+mv(Δv/Δt)
mv'(t)v+mvv'(t)=mv'(t)v+mvv'(t)
mv'v+mvv'=mv'v+mvv'
f'g+fg'=f'g+fg'


Fvcosθ=Fvcosθ
Fv=Fv
F(Δr/Δt)=F(Δr/Δt)
(ΔFr/Δt)=(ΔFr/Δt)
(Δmar/Δt)=(Δmar/Δt)
[Δmar/Δt]=[Δmar/Δt]
[Δm(Δv/Δt)r/Δt]=[Δm(Δv/Δt)r/Δt] [Δmv(Δ/Δt)r/Δt]=[Δmv(Δ/Δt)r/Δt] [Δmv(Δr/Δt)/Δt]=[Δmv(Δr/Δt)/Δt] [Δmvv/Δt]=[Δmvv/Δt]
(Δmvv/Δt)=(Δmvv/Δt)
(mvv)'(t)=(mvv)'(t)
(mvv)'=(mvv)'
(mvv)'(t)=(mvv)'(t)
(Δmvv/Δt)=(Δmvv/Δt)
Δmvv/Δt=Δmvv/Δt
Δfg/Δt=Δfg/Δt


Δmvv/Δt=Δmvv/Δt
Δfg/Δt=Δfg/Δt
mv'v+mvv'=mv'v+mvv'
f'g+fg'=f'g+fg'
Δmvv/Δt=mv'v+mvv'
Δfg/Δt=f'g+fg'
ここまで




ここから
(Δmvv)=(Δmvv)
(Δfg)=(Δfg)
mv'vΔt+mvv'Δt=mv'vΔt+mvv'Δt
f'gΔt+fg'Δt=f'gΔt+fg'Δt
(Δmvv)=mv'vΔt+mvv'Δt
(Δfg)=f'gΔt+fg'Δt


(Δmvv)=(Δmvv)
Δmvv=Δmvv
(Δfg)=(Δfg)
Δfg=Δfg
mv'vΔt+mvv'Δt=mv'vΔt+mvv'Δt
f'gΔt+fg'Δt=f'gΔt+fg'Δt
(Δmvv)=mv'vΔt+mvv'Δt
Δmvv=mv'vΔt+mvv'Δt
(Δfg)=f'gΔt+fg'Δt
Δfg=f'gΔt+fg'Δt


Fvcosθ=Fvcosθ
Fv=Fv
F(Δr/Δt)=F(Δr/Δt)
(ΔFr/Δt)=(ΔFr/Δt)
(Δmar/Δt)=(Δmar/Δt)
[Δmar/Δt]=[Δmar/Δt]
[Δm(Δv/Δt)r/Δt]=[Δm(Δv/Δt)r/Δt] [Δmv(Δ/Δt)r/Δt]=[Δmv(Δ/Δt)r/Δt] [Δmv(Δr/Δt)/Δt]=[Δmv(Δr/Δt)/Δt] [Δmvv/Δt]=[Δmvv/Δt]
(Δmvv/Δt)=(Δmvv/Δt)
(mvv)'(t)=(mvv)'(t)
(mvv)'=(mvv)'
(mvv)'(t)=(mvv)'(t)
(Δmvv/Δt)=(Δmvv/Δt)
(Δmvv)=(Δmvv)
(Δfg)=(Δfg)


Fvcosθ=Fvcosθ
Fv=Fv
F(Δr/Δt)=F(Δr/Δt)
(ΔFr/Δt)=(ΔFr/Δt)
(Δmar/Δt)=(Δmar/Δt)
[Δmar/Δt]=[Δmar/Δt]
[Δm(Δv/Δt)r/Δt]=[Δm(Δv/Δt)r/Δt] [Δmv(Δ/Δt)r/Δt]=[Δmv(Δ/Δt)r/Δt] [Δmv(Δr/Δt)/Δt]=[Δmv(Δr/Δt)/Δt] [Δmvv/Δt]=[Δmvv/Δt]
(Δmvv/Δt)=(Δmvv/Δt)
Δmvv/Δt=Δmvv/Δt
(mvv)'(t)=(mvv)'(t)
(mvv)'=(mvv)'
(mvv)'(t)=(mvv)'(t)
(Δmvv/Δt)=(Δmvv/Δt)
Δmvv/Δt=Δmvv/Δt
(Δmvv)=(Δmvv)
Δmvv=Δmvv
(Δfg)=(Δfg)
Δfg=Δfg


Fvcosθ=Fvcosθ
Fv=Fv
2Fv=2Fv
2mav=2mav
mav+mav=mav+mav
mav+mva=mav+mva
m(Δv/Δt)v+mv(Δv/Δt)=m(Δv/Δt)v+mv(Δv/Δt)
mv'(t)v+mvv'(t)=mv'(t)v+mvv'(t)
mv'v+mvv'=mv'v+mvv'
mv'vΔt+mvv'Δt=mv'vΔt+mvv'Δt
f'gΔt+fg'Δt=f'gΔt+fg'Δt


(Δmvv)=(Δmvv)
2Fv=2Fv
2FvΔt=2FvΔt
(Δmvv)=(Δmvv)
(Δmvv)=2FvΔt
(1/2)(Δmvv)=FvΔt


(Δmvv)=(Δmvv)
2Fv=2Fv
2FvΔt=2FvΔt
(Δmvv)=(Δmvv)
(Δmvv)=2FvΔt
Δmvv=2FvΔt
(1/2)Δmvv=FvΔt


(Δmvv)=(Δmvv)
2Fv=2Fv
2FvΔt=2FvΔt
(Δmvv)=(Δmvv)
(Δmvv)=2FvΔt
(1/2)(Δmvv)=FvΔt
Δ(1/2)(mvv)=FvΔt


(Δmvv)=(Δmvv)
2Fv=2Fv
2FvΔt=2FvΔt
(Δmvv)=(Δmvv)
(Δmvv)=2FvΔt
Δmvv=2FvΔt
(1/2)Δmvv=FvΔt
Δ(1/2)mvv=FvΔt


(Δmvv)=(Δmvv)
(Δfg)=(Δfg)
mv'vΔt+mvv'Δt=mv'vΔt+mvv'Δt
f'gΔt+fg'Δt=f'gΔt+fg'Δt
(Δmvv)=mv'vΔt+mvv'Δt
(Δfg)=f'gΔt+fg'Δt


(Δmvv)=(Δmvv)
Δmvv=Δmvv
(Δfg)=(Δfg)
Δfg=Δfg
mv'vΔt+mvv'Δt=mv'vΔt+mvv'Δt
f'gΔt+fg'Δt=f'gΔt+fg'Δt
(Δmvv)=mv'vΔt+mvv'Δt
Δmvv=mv'vΔt+mvv'Δt
(Δfg)=f'gΔt+fg'Δt
Δfg=f'gΔt+fg'Δt
ここまで




ここから
Δmvv=Δmvv
Δfg=Δfg
mv'vΔt+mvv'Δt=mv'vΔt+mvv'Δt
f'gΔt+fg'Δt=f'gΔt+fg'Δt
Δmvv=mv'vΔt+mvv'Δt
Δfg=f'gΔt+fg'Δt


Fvcosθ=Fvcosθ
Fv=Fv
F(Δr/Δt)=F(Δr/Δt)
(ΔFr/Δt)=(ΔFr/Δt)
(Δmar/Δt)=(Δmar/Δt)
[Δmar/Δt]=[Δmar/Δt]
[Δm(Δv/Δt)r/Δt]=[Δm(Δv/Δt)r/Δt] [Δmv(Δ/Δt)r/Δt]=[Δmv(Δ/Δt)r/Δt] [Δmv(Δr/Δt)/Δt]=[Δmv(Δr/Δt)/Δt] [Δmvv/Δt]=[Δmvv/Δt]
(Δmvv/Δt)=(Δmvv/Δt)
(mvv)'(t)=(mvv)'(t)
(mvv)'=(mvv)'
(mvv)'(t)=(mvv)'(t)
(Δmvv/Δt)=(Δmvv/Δt)
(Δmvv)=(Δmvv)
Δmvv=Δmvv
Δfg=Δfg


Δmvv=Δmvv
2Fv=2Fv
2FvΔt=2FvΔt
Δmvv=Δmvv
Δmvv=2FvΔt
(1/2)Δmvv=FvΔt


Δmvv=Δmvv
2Fv=2Fv
2FvΔt=2FvΔt
Δmvv=Δmvv
Δmvv=2FvΔt
(1/2)Δmvv=FvΔt


Δmvv=Δmvv
2Fv=2Fv
2FvΔt=2FvΔt
Δmvv=Δmvv
Δmvv=2FvΔt
(1/2)Δmvv=FvΔt
Δ(1/2)mvv=FvΔt


Δmvv=Δmvv
2Fv=2Fv
2FvΔt=2FvΔt
Δmvv=Δmvv
Δmvv=2FvΔt
(1/2)Δmvv=FvΔt
Δ(1/2)mvv=FvΔt


Δmvv=Δmvv
Δfg=Δfg
mv'vΔt+mvv'Δt=mv'vΔt+mvv'Δt
f'gΔt+fg'Δt=f'gΔt+fg'Δt
Δmvv=mv'vΔt+mvv'Δt
Δfg=f'gΔt+fg'Δt
ここまで






ここから
(mvv)=(mvv)
(fg)=(fg)
Σmv'vΔt+mvv'Δt=Σmv'vΔt+Σmvv'Δt
Σf'gΔt+fg'Δt=Σf'gΔt+fg'Δt
(mvv)=Σmv'vΔt+Σmvv'Δt
(fg)=Σf'gΔt+Σfg'Δt


(mvv)=(mvv)
mvv=mvv
(fg)=(fg)
fg=fg
Σmv'vΔt+Σmvv'Δt=Σmv'vΔt+Σmvv'Δt
Σf'gΔt+Σfg'Δt=Σf'gΔt+Σfg'Δt
(mvv)=Σmv'vΔt+Σmvv'Δt
mvv=Σmv'vΔt+Σmvv'Δt
(fg)=Σf'gΔt+Σfg'Δt
fg=Σf'gΔt+Σfg'Δt


Fvcosθ=Fvcosθ
Fv=Fv
F(Δr/Δt)=F(Δr/Δt)
(ΔFr/Δt)=(ΔFr/Δt)
(Δmar/Δt)=(Δmar/Δt)
[Δmar/Δt]=[Δmar/Δt]
[Δm(Δv/Δt)r/Δt]=[Δm(Δv/Δt)r/Δt] [Δmv(Δ/Δt)r/Δt]=[Δmv(Δ/Δt)r/Δt] [Δmv(Δr/Δt)/Δt]=[Δmv(Δr/Δt)/Δt]
[Δmvv/Δt]=[Δmvv/Δt]
(Δmvv/Δt)=(Δmvv/Δt)
(mvv)'(t)=(mvv)'(t)
(mvv)'=(mvv)'
(mvv)'(t)=(mvv)'(t)
(Δmvv/Δt)=(Δmvv/Δt)
(Δmvv)=(Δmvv)
(ΣΔmvv)=(ΣΔmvv)
(mvv)=(mvv)
(fg)=(fg)


Fvcosθ=Fvcosθ
Fv=Fv
F(Δr/Δt)=F(Δr/Δt)
(ΔFr/Δt)=(ΔFr/Δt)
(Δmar/Δt)=(Δmar/Δt)
[Δmar/Δt]=[Δmar/Δt]
[Δm(Δv/Δt)r/Δt]=[Δm(Δv/Δt)r/Δt] [Δmv(Δ/Δt)r/Δt]=[Δmv(Δ/Δt)r/Δt] [Δmv(Δr/Δt)/Δt]=[Δmv(Δr/Δt)/Δt]
[Δmvv/Δt]=[Δmvv/Δt]
(Δmvv/Δt)=(Δmvv/Δt)
Δmvv/Δt=Δmvv/Δt
(mvv)'(t)=(mvv)'(t)
(mvv)'=(mvv)'
(mvv)'(t)=(mvv)'(t)
(Δmvv/Δt)=(Δmvv/Δt)
Δmvv/Δt=Δmvv/Δt
(Δmvv)=(Δmvv)
Δmvv=Δmvv
(ΣΔmvv)=(ΣΔmvv)
ΣΔmvv=ΣΔmvv
(mvv)=(mvv)
mvv=mvv
(fg)=(fg)
fg=fg


Fvcosθ=Fvcosθ
Fv=Fv
2Fv=2Fv
2mav=2mav
mav+mav=mav+mav
mav+mva=mav+mva
m(Δv/Δt)v+mv(Δv/Δt)=m(Δv/Δt)v+mv(Δv/Δt)
mv'(t)v+mvv'(t)=mv'(t)v+mvv'(t)
mv'v+mvv'=mv'v+mvv'
mv'vΔt+mvv'Δt=mv'vΔt+mvv'Δt
Σmv'vΔt+Σmvv'Δt=Σmv'vΔt+Σmvv'Δt
Σf'gΔt+Σfg'Δt=Σf'gΔt+Σfg'Δt


(mvv)=(mvv)
2Fv=2Fv
2FvΔt=2FvΔt
2ΣFvΔt=2ΣFvΔt
(mvv)=(mvv)
(mvv)=2ΣFvΔt
(1/2)(mvv)=ΣFvΔt


(mvv)=(mvv)
2Fv=2Fv
2FvΔt=2FvΔt
2ΣFvΔt=2ΣFvΔt
(mvv)=(mvv)
(mvv)=2ΣFvΔt
mvv=2ΣFvΔt
(1/2)mvv=ΣFvΔt


(mvv)=(mvv)
2Fv=2Fv
2FvΔt=2FvΔt
2ΣFvΔt=2ΣFvΔt
(mvv)=(mvv)
(mvv)=2ΣFvΔt
(1/2)(mvv)=ΣFvΔt


(mvv)=(mvv)
2Fv=2Fv
2FvΔt=2FvΔt
2ΣFvΔt=2ΣFvΔt
(mvv)=(mvv)
(mvv)=2ΣFvΔt
mvv=2ΣFvΔt
(1/2)mvv=ΣFvΔt


(mvv)=(mvv)
(fg)=(fg)
Σmv'vΔt+Σmvv'Δt=Σmv'vΔt+Σmvv'Δt
Σf'gΔt+Σfg'Δt=Σf'gΔt+Σfg'Δt
(mvv)=Σmv'vΔt+Σmvv'Δt
(fg)=Σf'gΔt+Σfg'Δt


(mvv)=(mvv)
mvv=mvv
(fg)=(fg)
fg=fg
Σmv'vΔt+Σmvv'Δt=Σmv'vΔt+Σmvv'Δt
Σf'gΔt+Σfg'Δt=Σf'gΔt+Σfg'Δt
(mvv)=Σmv'vΔt+Σmvv'Δt
mvv=Σmv'vΔt+Σmvv'Δt
(fg)=Σf'gΔt+Σfg'Δt
fg=Σf'gΔt+Σfg'Δt


mvv=mvv
fg=fg
Σmv'vΔt+Σmvv'Δt=Σmv'vΔt+Σmvv'Δt
Σf'gΔt+Σfg'Δt=Σf'gΔt+Σfg'Δt
mvv=Σmv'vΔt+Σmvv'Δt
fg=Σf'gΔt+Σfg'Δt
ここまで


ここから
Fvcosθ=Fvcosθ
Fv=Fv
F(Δr/Δt)=F(Δr/Δt)
(ΔFr/Δt)=(ΔFr/Δt)
(Δmar/Δt)=(Δmar/Δt)
[Δmar/Δt]=[Δmar/Δt]
[Δm(Δv/Δt)r/Δt]=[Δm(Δv/Δt)r/Δt] [Δmv(Δ/Δt)r/Δt]=[Δmv(Δ/Δt)r/Δt] [Δmv(Δr/Δt)/Δt]=[Δmv(Δr/Δt)/Δt] [Δmvv/Δt]=[Δmvv/Δt]
(Δmvv/Δt)=(Δmvv/Δt)
(mvv)'(t)=(mvv)'(t)
(mvv)'=(mvv)'
(mvv)'(t)=(mvv)'(t)
(Δmvv/Δt)=(Δmvv/Δt)
(Δmvv)=(Δmvv)
(ΣΔmvv)=(ΣΔmvv)
(mvv)=(mvv)
mvv=mvv
fg=fg


Fvcosθ=Fvcosθ
Fv=Fv
2Fv=2Fv
2mav=2mav
mav+mav=mav+mav
mav+mva=mav+mva
m(Δv/Δt)v+mv(Δv/Δt)=m(Δv/Δt)v+mv(Δv/Δt)
mv'(t)v+mvv'(t)=mv'(t)v+mvv'(t)
mv'v+mvv'=mv'v+mvv'
mv'vΔt+mvv'Δt=mv'vΔt+mvv'Δt
Σmv'vΔt+Σmvv'Δt=Σmv'vΔt+Σmvv'Δt
Σf'gΔt+Σfg'Δt=Σf'gΔt+Σfg'Δt


mvv=mvv
2Fv=2Fv
2FvΔt=2FvΔt
2ΣFvΔt=2ΣFvΔt
mvv=mvv
mvv=2ΣFvΔt
(1/2)mvv=ΣFvΔt


mvv=mvv
fg=fg
Σmv'vΔt+Σmvv'Δt=Σmv'vΔt+Σmvv'Δt
Σf'gΔt+Σfg'Δt=Σf'gΔt+Σfg'Δt
mvv=Σmv'vΔt+Σmvv'Δt
fg=Σf'gΔt+Σfg'Δt
ここまで





熱力学
ねつりきがく
Thermodynamics
ボイルシャルルの法則
Boyle And Charles's Law
Combined Gas Law
エントロピー
Entropy


ボイルシャルルの法則
Boyle And Charles's Law


Fvcosθ=Fvcosθ
Fv=Fv
F(Δx/Δt)=F(Δx/Δt)
(ΔFx/Δt)=(ΔFx/Δt)
(Fx)'(t)=(Fx)'(t)
(Fx)'=(Fx)'
(Fx)'(t)=(Fx)'(t)
(ΔFx/Δt)=(ΔFx/Δt)
(ΔFx)=(ΔFx)
(ΣΔFx)=(ΣΔFx)
(Fx)=(Fx)
Fx=Fx
PV=PV


Fvcosθ=Fvcosθ
Fv=Fv
F(Δr/Δt)=F(Δr/Δt)
(ΔFr/Δt)=(ΔFr/Δt)
(Δmar/Δt)=(Δmar/Δt)
[Δmar/Δt]=[Δmar/Δt]
[Δm(Δv/Δt)r/Δt]=[Δm(Δv/Δt)r/Δt] [Δmv(Δ/Δt)r/Δt]=[Δmv(Δ/Δt)r/Δt] [Δmv(Δr/Δt)/Δt]=[Δmv(Δr/Δt)/Δt] [Δmvv/Δt]=[Δmvv/Δt]
(Δmvv/Δt)=(Δmvv/Δt)
(mvv)'(t)=(mvv)'(t)
(mvv)'=(mvv)'
(mvv)'(t)=(mvv)'(t)
(Δmvv/Δt)=(Δmvv/Δt)
(Δmvv)=(Δmvv)
(ΣΔmvv)=(ΣΔmvv)
(mvv)=(mvv)


(mvv)=(mvv)
mvv=mvv
(1/2)mvv=(1/2)mvv
(3/2)kT=(3/2)kT
kT=kT
T=T
1/T=1/T


PV=PV
1/T=1/T
PV/T=PV/T


エントロピー
Entropy


(mvv)=(mvv)
mvv=mvv
(1/2)mvv=(1/2)mvv
(3/2)kT=(3/2)kT
kT=kT
T=T
lnT=lnT
klnT=klnT
S=S


klnT=klnT
S=S
S=klnT


(1/2)mvv=(1/2)mvv
(3/2)kT=(3/2)kT
(1/2)mvv=(3/2)kT


(Δmvv)=(Δmvv)
Δ(mvv)=Δ(mvv)
Δmvv=Δmvv
Δ(1/2)mvv=Δ(1/2)mvv
Δ(3/2)kT=Δ(3/2)kT
ΔkT=ΔkT
ΔT=ΔT
ΔlnT=ΔlnT
ΔklnT=ΔklnT
ΔS=ΔS


ΔklnT=ΔklnT
ΔS=ΔS
ΔS=ΔklnT


Δ(1/2)mvv=Δ(1/2)mvv
Δ(3/2)kT=Δ(3/2)kT
Δ(1/2)mvv=Δ(3/2)kT




Fx=Fx
E=E
1/T=1/T
E/T=E/T
S=S


ΔFx=ΔFx
ΔE=ΔE
1/T=1/T
ΔE/T=ΔE/T
ΔS=ΔS


ΔE/T=ΔE/T
ΔS=ΔS
ΔS=ΔE/T




Fx=Fx
Q=Q
1/T=1/T
Q/T=Q/T
S=S


Q/T=Q/T
S=S
S=Q/T



ΔFx=ΔFx
ΔQ=ΔQ
1/T=1/T
ΔQ/T=ΔQ/T
ΔS=ΔS


ΔQ/T=ΔQ/T
ΔS=ΔS
ΔS=ΔQ/T



熱力学第一法則
ねつりきがくだいいちほうそく


Q/T=Q/T
PV/T=PV/T
Q/T+PV/T=Q/T+PV/T
Q/T+Fx/T=Q/T+Fx/T
Q/T+W/T=Q/T+W/T
Q+W=Q+W


Q+W=Q+W
U=U
U=Q+W


Q+W=Q+W
ΔU=ΔU
ΔU=Q+W



Q/T=Q/T
PV/T=PV/T
Q/T-PV/T=Q/T-PV/T
Q/T-Fx/T=Q/T-Fx/T
Q/T-W/T=Q/T-W/T
Q-W=Q-W


Q-W=Q-W
U=U
U=Q-W


Q-W=Q-W
ΔU=ΔU
ΔU=Q-W





流体力学
Fluid Mechanics
Fluid Dynamics
りゅうたいりきがく
エネルギー非保存則
エネルギーひほぞんそく
ラグランジアン
Lagrangian


Fvcosθ=Fvcosθ
Fv=Fv
F(Δx/Δt)=F(Δx/Δt)
(ΔFx/Δt)=(ΔFx/Δt)
(Fx)'(t)=(Fx)'(t)
(Fx)'=(Fx)'
(Fx)'(t)=(Fx)'(t)
(ΔFx/Δt)=(ΔFx/Δt)
(ΔFx)=(ΔFx)
(ΣΔFx)=(ΣΔFx)
(Fx)=(Fx)


Fvcosθ=Fvcosθ
Fv=Fv
F(Δr/Δt)=F(Δr/Δt)
(ΔFr/Δt)=(ΔFr/Δt)
(Δmar/Δt)=(Δmar/Δt)
[Δmar/Δt]=[Δmar/Δt]
[Δm(Δv/Δt)r/Δt]=[Δm(Δv/Δt)r/Δt] [Δmv(Δ/Δt)r/Δt]=[Δmv(Δ/Δt)r/Δt] [Δmv(Δr/Δt)/Δt]=[Δmv(Δr/Δt)/Δt]
[Δmvv/Δt]=[Δmvv/Δt]
(Δmvv/Δt)=(Δmvv/Δt)
(mvv)'(t)=(mvv)'(t)
(mvv)'=(mvv)'
(mvv)'(t)=(mvv)'(t)
(Δmvv/Δt)=(Δmvv/Δt)
(Δmvv)=(Δmvv)
(ΣΔmvv)=(ΣΔmvv)
(mvv)=(mvv)


(mvv)=(mvv)
mvv=mvv
(1/2)mvv=(1/2)mvv




エネルギー非保存則
エネルギーひほぞんそく


(Fx)=(Fx)
Fx=Fx
(1/2)mvv=(1/2)mvv
Fx+(1/2)mvv=Fx+(1/2)mvv
U=U
K=K
U+K=U+K
E=E


Fx+(1/2)mvv=Fx+(1/2)mvv
U+K=U+K
U+K=Fx+(1/2)mvv


U+K=U+K
E=E
E=U+K


U+K=Fx+(1/2)mvv
E=U+K
E=U+K=Fx+(1/2)mvv


E=U+K=Fx+(1/2)mvv
Fx+(1/2)mvv=ΣF'xΔt+2ΣFvΔt
E=U+K=Fx+(1/2)mvv=ΣF'xΔt+2ΣFvΔt



ラグランジアン
Lagrangian


(Fx)=(Fx)
Fx=Fx
(1/2)mvv=(1/2)mvv
Fx-(1/2)mvv=Fx-(1/2)mvv
U=U
K=K
U-K=U-K
L=L
LΔt=LΔt
ΣLΔt=ΣLΔt
S=S


Fx-(1/2)mvv=Fx-(1/2)mvv
U-K=U-K
U-K=Fx-(1/2)mvv


U-K=U-K
L=L
L=U-K


U-K=Fx-(1/2)mvv
L=U-K
L=U-K=Fx-(1/2)mvv


L=U-K=Fx-(1/2)mvv
Fx-(1/2)mvv=ΣF'xΔt
L=U-K=Fx-(1/2)mvv=ΣF'xΔt
LΔt=(U-K)Δt=[Fx-(1/2)mvv]Δt=ΣF'xΔtΔt
ΣLΔt=Σ(U-K)Δt=Σ[Fx-(1/2)mvv]Δt=ΣΣF'xΔtΔt
S=ΣLΔt=Σ(U-K)Δt=Σ[Fx-(1/2)mvv]Δt=ΣΣF'xΔtΔt


ΣLΔt=ΣLΔt
S=S
S=ΣLΔt




ラグランジアン
Lagrangian


(Fx)=(Fx)
Fx=Fx
(1/2)mvv=(1/2)mvv
Fx-(1/2)mvv=Fx-(1/2)mvv
U=U
K=K
U-K=U-K
L=L
LΔt=LΔt
ΣLΔt=ΣLΔt
δΣLΔt=δΣLΔt
δS=δS


Fx-(1/2)mvv=Fx-(1/2)mvv
U-K=U-K
U-K=Fx-(1/2)mvv


U-K=U-K
L=L
L=U-K


U-K=Fx-(1/2)mvv
L=U-K
L=U-K=Fx-(1/2)mvv


L=U-K=Fx-(1/2)mvv
Fx-(1/2)mvv=ΣF'xΔt
L=U-K=Fx-(1/2)mvv=ΣF'xΔt
LΔt=(U-K)Δt=[Fx-(1/2)mvv]Δt=ΣF'xΔtΔt
ΣLΔt=Σ(U-K)Δt=Σ[Fx-(1/2)mvv]Δt=ΣΣF'xΔtΔt
δΣLΔt=δΣ(U-K)Δt=δΣ[Fx-(1/2)mvv]Δt=δΣΣF'xΔtΔt
δS=δΣLΔt=δΣ(U-K)Δt=δΣ[Fx-(1/2)mvv]Δt=δΣΣF'xΔtΔt


δΣLΔt=δΣLΔt
δS=δS
δS=δΣLΔt




ラグランジアン
Lagrangian


(Fx)=(Fx)
Fx=Fx
(1/2)mvv=(1/2)mvv
(1/2)mvv-Fx=(1/2)mvv-Fx
U=U
K=K
K-U=K-U
(-L)=(-L)
(-LΔt)=(-LΔt)
(-ΣLΔt)=(-ΣLΔt)
(-S)=(-S)


(1/2)mvv-Fx=(1/2)mvv-Fx
K-U=K-U
K-U=(1/2)mvv-Fx


K-U=K-U
(-L)=(-L)
(-L)=K-U


K-U=(1/2)mvv-Fx
(-L)=K-U
(-L)=K-U=(1/2)mvv-Fx


(-L)=K-U=(1/2)mvv-Fx
(1/2)mvv-Fx=-ΣF'xΔt
(-L)=K-U=(1/2)mvv-Fx=-ΣF'xΔt
(-LΔt)=(K-U)Δt=[(1/2)mvv-Fx]Δt=-ΣF'xΔtΔt
(-ΣLΔt)=Σ(K-U)Δt=Σ[(1/2)mvv-Fx]Δt=-ΣΣF'xΔtΔt
(-S)=(-ΣLΔt)=Σ(K-U)Δt=Σ[(1/2)mvv-Fx]Δt=-ΣΣF'xΔtΔt


(-ΣLΔt)=(-ΣLΔt)
(-S)=(-S)
(-S)=(-ΣLΔt)




ラグランジアン
Lagrangian


(Fx)=(Fx)
Fx=Fx
(1/2)mvv=(1/2)mvv
(1/2)mvv-Fx=(1/2)mvv-Fx
U=U
K=K
K-U=K-U
(-L)=(-L)
(-LΔt)=(-LΔt)
(-ΣLΔt)=(-ΣLΔt)
(-δΣLΔt)=(-δΣLΔt)
(-δS)=(-δS)


(1/2)mvv-Fx=(1/2)mvv-Fx
K-U=K-U
K-U=(1/2)mvv-Fx


K-U=K-U
(-L)=(-L)
(-L)=K-U


K-U=(1/2)mvv-Fx
(-L)=K-U
(-L)=K-U=(1/2)mvv-Fx


(-L)=K-U=(1/2)mvv-Fx
(1/2)mvv-Fx=-ΣF'xΔt
(-L)=K-U=(1/2)mvv-Fx=-ΣF'xΔt
(-LΔt)=(K-U)Δt=[(1/2)mvv-Fx]Δt=-ΣF'xΔtΔt
(-ΣLΔt)=Σ(K-U)Δt=Σ[(1/2)mvv-Fx]Δt=-ΣΣF'xΔtΔt
(-δΣLΔt)=δΣ(K-U)Δt=δΣ[(1/2)mvv-Fx]Δt=-δΣΣF'xΔtΔt
(-δS)=(-δΣLΔt)=δΣ(K-U)Δt=δΣ[(1/2)mvv-Fx]Δt=-δΣΣF'xΔtΔt


(-δΣLΔt)=(-δΣLΔt)
(-δS)=(-δS)
(-δS)=(-δΣLΔt)



電磁気学
でんじきがく
Electromagnetism


Fe=ee/4πε0r^2
Fg=gg/4πμ0r^2
Fe=eE
Fg=gH
eE=ee/4πε0r^2
gH=gg/4πμ0r^2
E=e/4πε0r^2
H=g/4πμ0r^2
E4πε0r^2=e
H4πμ0r^2=g
ε0E4πr^2=e
μ0H4πr^2=g
D4πr^2=e
B4πr^2=g
DS=e
BS=g
e=DS
g=BS
ψ=e=DS
Φ=g=BS
ψ=eV/V=DS
Φ=gV/V=BS
ψ=e(1/V)V=DS
Φ=g(1/V)V=BS
ψ=(e/V)V=DS
Φ=(g/V)V=BS
ψ=Σ(e/V)ΔV=ΣDΔS
Φ=Σ(g/V)ΔV=ΣBΔS
ψ=ΣρΔV=ΣDΔS
Φ=ΣρΔV=ΣBΔS
ψ=ΣρΔV=ΣdivDΔV
Φ=ΣρΔV=ΣdivBΔV
ρ=divD
ρ=divB
divD=ρ
divB=ρ
divD=divD+divD=ρ+(-ρ)=0
divB=divB+divB=ρ+(-ρ)=0
divD=0
divB=0
divD+divD=0
divB+divB=0
divD=-divD
divB=-divB
divD=ρ
divB=ρ
divD=-ρ
divB=-ρ
ρ+(-ρ)=0
ρ=ρ
divD=ρ
divB=ρ
divD=divD+divD=ρ+ρ=0
divB=divB+divB=ρ+ρ=0
divD=0
divB=0
divD+divD=0
divB+divB=0
divD=-divD
divB=-divB
ρ+ρ=0
ρ=-ρ
divD=ρ
divB=ρ
divD=divD-divD=ρ-ρ=0
divB=divB-divB=ρ-ρ=0
divD=0
divB=0
divD-divD=0
divB-divB=0
divD=divD
divB=divB
ρ-ρ=0
ρ=ρ
divD=ρ
divB=ρ
divD=divD-divD=ρ+ρ=0
divB=divB-divB=ρ+ρ=0
divD=0
divB=0
divD-divD=0
divB-divB=0
divD=divD
divB=divB
ρ+ρ=0
ρ=-ρ
divD=divD
divB=divB
D=D
B=B
∂D/∂t=∂D/∂t
∂B/∂t=∂B/∂t
∂D/∂t=∂D/∂t
(-∂B/∂t)=(-∂B/∂t)
(-∂B/∂t)=(-∂B/∂t)
∂D/∂t=∂D/∂t
eE=eE
gH=gH
E=E
H=H
rotE=rotE
rotH=rotH
(-∂B/∂t)=(-∂B/∂t)
∂D/∂t=∂D/∂t
rotE=(-∂B/∂t)
rotH=∂D/∂t
rotE=-∂B/∂t
rotH=∂D/∂t




mv2πr=h
mv=h/2πr
evB=mvv/r
evBr=mvv
eBr=mv
mv=h/2πr
eBr=h/2πr
eB=h/2πr^2
eB2πr^2=h
2g=B4πr^2
g=B2πr^2
eB2πr^2=h
eg=h


eg=h
eg=eg
h=h
eg=eg
eEgH=eEgH
FeFg=FeFg


FeFg=FeFg
Fe=Fe


FeFg=FeFg
Fg=Fg



eg=h
eg=eg
h=h
eg=eg
evBgvD=evBgvD


evBgvD=evBgvD
evB=evB


evBgvD=evBgvD
gvD=gvD



eg=h
eg=eg
h=h
eg=eg
evBgvD=evBgvD
BD=BD


eg=h
eg=eg
h=h
eg=eg
evBgvD=evBgvD
BD=BD
(∂B/∂t)(∂D/∂t)=(∂B/∂t)(∂D/∂t)


(∂B/∂t)(∂D/∂t)=(∂B/∂t)(∂D/∂t)
(∂B/∂t)=(∂B/∂t)


(∂B/∂t)(∂D/∂t)=(∂B/∂t)(∂D/∂t)
(∂D/∂t)=(∂D/∂t)


eg=h
eg=eg
h=h
eg=eg
evBgvD=evBgvD
BD=BD
μ0Hε0E=μ0Hε0E
HE=HE


eg=h
eg=eg
h=h
eg=eg
evBgvD=evBgvD
BD=BD
μ0Hε0E=μ0Hε0E
HE=HE
rotHrotE=rotHrotE


rotHrotE=rotHrotE
rotH=rotH


rotHrotE=rotHrotE
rotE=rotE



eg=h
eg=eg
h=h
eg=eg
eEgH=eEgH
EH=EH


eg=h
eg=eg
h=h
eg=eg
eEgH=eEgH
EH=EH
rotErotH=rotErotH


rotErotH=rotErotH
rotE=rotE


rotErotH=rotErotH
rotH=rotH



eg=h
eg=eg
h=h
eg=eg
eEgH=eEgH
EH=EH
ε0Eμ0H=ε0Eμ0H
DB=DB


eg=h
eg=eg
h=h
eg=eg
eEgH=eEgH
EH=EH
ε0Eμ0H=ε0Eμ0H
DB=DB
(∂D/∂t)(∂B/∂t)=(∂D/∂t)(∂B/∂t)


(∂D/∂t)(∂B/∂t)=(∂D/∂t)(∂B/∂t)
(∂D/∂t)=(∂D/∂t)


(∂D/∂t)(∂B/∂t)=(∂D/∂t)(∂B/∂t)
(∂B/∂t)=(∂B/∂t)



Fe=ee/4πε0r^2
eE=ee/4πε0r^2
E=e/4πε0r^2
ε0E=e/4πr^2
ε0E=e/S
D=e/S
DS=e
e=DS
ψ=e=DS


ψ=e=DS
ψsinθ=esinθ=DSsinθ
ψnsinθ=ensinθ=DSnsinθ


ψ=e=DS
ψcosθ=ecosθ=DScosθ
ψncosθ=encosθ=DSncosθ



ψ=e=DS
ψE=eE=DSE
ψE=Fe=eE=DSE


ψ=e=DS
gvψ=gve=gvDS



Fg=gg/4πμ0r^2
gH=gg/4πμ0r^2
H=g/4πμ0r^2
μ0H=g/4πr^2
μ0H=g/S
B=g/S
BS=g
g=BS
Φ=g=BS


Φ=g=BS
Φsinθ=gsinθ=BSsinθ
Φnsinθ=gnsinθ=BSnsinθ


Φ=g=BS
Φcosθ=gcosθ=BScosθ
Φncosθ=gncosθ=BSncosθ





Φ=g=BS
ΦH=gH=BSH
ΦH=Fg=gH=BSH


Φ=g=BS
evΦ=evg=evBS



ψ=e=DS
Φ=g=BS
ψΦ=eg=DSBS
eg=h
ψΦ=eg=DSBS=h



mvv/r=ee/4πε0r^2
mvv=ee/4πε0r
(mv)v=ee/4πrε0
mv2πr=h
mv=h/2πr
(mv)v=ee/4πrε0
(h/2πr)v=ee/4πrε0
(hv/2πr)=ee/4πrε0
hv/2πr=ee/4πrε0
hv=ee/2ε0
v=ee/2ε0h
v/c=ee/2ε0hc


Fe=Fg(v/c)^2
Fe=ee/4πε0r^2
Fg=gg/4πμ0r^2
(ee/4πε0r^2)=(gg/4πμ0r^2)(2v/c)^2
(ee/ε0)=(gg/μ0)(2v/c)^2
(e/√ε0)=(g/√μ0)(v/c)2
(e/g)=(√ε0/√μ0)(v/c)2
v/c=ee/2ε0hc
(e/g)=(√ε0/√μ0)(ee/2ε0hc)2
(e/g)=(√ε0/√μ0)(ee/√ε0√ε0hc)
(e/g)=(1/√μ0)√ε0(ee/√ε0√ε0hc)
(e/g)=(1/√μ0)(ee/√ε0hc)
(e/g)=(1/√μ0√ε0)(ee/hc)
(e/g)=(e/√μ0√ε0)(e/hc)
(1/g)=(1/√μ0√ε0)(e/hc)
1=(1/√μ0√ε0)(eg/hc)
1/c=√ε0√μ0
c=1/√ε0√μ0
1=(1/√μ0√ε0)(eg/hc)
1=c(eg/hc)
1=(eg/h)
h=eg
eg=h


mvv/r=gg/4πμ0r^2
mvv=gg/4πμ0r
(mv)v=gg/4πrμ0
mv2πr=h
mv=h/2πr
(mv)v=gg/4πrμ0
(h/2πr)v=gg/4πrμ0
(hv/2πr)=gg/4πrμ0
(hv)=gg/2μ0
hv=gg/2μ0
v=gg/2μ0h
v/c'=gg/2μ0hc'


Fg=Fe(v/c')^2
Fg=gg/4πμ0r^2
Fe=ee/4πε0r^2
(gg/4πμ0r^2)=(ee/4πε0r^2)(v/c')^2
(gg/μ0)=(ee/ε0)(v/c')^2
(g/√μ0)=(e/√ε0)(v/c')
(g/e)=(√μ0/√ε0)(v/c')
v/c=gg/2μ0hc'
(g/e)=(√μ0/√ε0)(gg/2μ0hc')



F=(ee/4πε0r^2)+evB
F=(ee/4πε0r^2)+evB=0
(ee/4πε0r^2)+evB=0
(ee/4πε0r^2)=-evB
(e/4πε0r^2)=-vB
(e/4πε0r^2)=(-vB)
(-vB)=(e/4πε0r^2)
(-vB)=(e/4πε0r^2)
(-vB4πε0r^2)=e
(-ε0vB4πr^2)=e
2g=B4πr^2
(-ε0v2g)=e
(-2ε0vg)=e
(-2ε0v)=e/g
(-2ε0v)=e(1/g)
eg=h
g=h/e
1/g=e/h
(-2ε0v)=e(1/g)
(-2ε0v)=e(e/h)
(-2ε0v)=ee/h
(-v)=ee/2ε0h
v=-ee/2ε0h
v/c=-ee/2ε0hc



F=gvD
Fg=gg/4πμ0r^2
gvD=gg/4πμ0r^2
vD=g/4πμ0r^2
vD4πμ0r^2=g
μ0vD4πr^2=g
2e=D4πr^2
μ0v2e=g
2μ0ve=g
2μ0v=g/e
2μ0v=g(1/e)
eg=h
e=h/g
1/e=g/h
2μ0v=g(1/e)
2μ0v=g(g/h)
2μ0v=gg/h
v=gg/2μ0h
v/c'=gg/2μ0hc'




精神物理学
せいしんぶつりがく
Psychophysics



Fvsinθ=Fvsinθ
Ry=Ry
Fvsinθ=Ry


Fvsinθ=Fvsinθ
Ry=Ry
lnRy=lnRy
klnRy=klnRy
Ey=Ey
Ey=klnRy


Fvsinθ=Fvsinθ
Ry=Ry
1/Ry=1/Ry


Fvsinθ=Fvsinθ
Ry=Ry
ΔRy=ΔRy


ΔRy=ΔRy
1/Ry=1/Ry
ΔRy(1/Ry)=ΔRy(1/Ry)
(ΔRy/Ry)=(ΔRy/Ry)


ΔRy=ΔRy
1/Ry=1/Ry
ΔRy(1/Ry)=ΔRy(1/Ry)
(ΔRy/Ry)=(ΔRy/Ry)
ΔRy/Ry=ΔRy/Ry



Fvcosθ=Fvcosθ
Rx=Rx
Fvcosθ=Rx


Fvcosθ=Fvcosθ
Rx=Rx
1/Rx=1/Rx


Fvcosθ=Fvcosθ
Rx=Rx
ΔRx=ΔRx


ΔRx=ΔRx
1/Rx=1/Rx
ΔRx(1/Rx)=ΔRx(1/Rx)
(ΔRx/Rx)=(ΔRx/Rx)


ΔRx=ΔRx
1/Rx=1/Rx
ΔRx(1/Rx)=ΔRx(1/Rx)
(ΔRx/Rx)=(ΔRx/Rx)
ΔRx/Rx=ΔRx/Rx


Fvcosθ=Fvcosθ
Rx=Rx
lnRx=lnRx
klnRx=klnRx
Ex=Ex
Ex=klnRx

シェアボタン: このページをSNSに投稿するのに便利です。

コメント

返信元返信をやめる

※ 悪質なユーザーの書き込みは制限します。

最新を表示する

NG表示方式

NGID一覧