耐震基準

ページ名:耐震基準

耐震基準(たいしんきじゅん)とは、建築物や土木構造物を設計する際に、それらの構造物が最低限度の耐震能力を持っていることを保証し、建築を許可する基準である。

日本においては、建築物には建築基準法及び建築基準法施行令などの法令により定められた基準が、また、原子力発電所などの重要構造物や道路・橋梁などの土木構造物には、それぞれ独自の基準が設けられている。ここでは建築物の耐震基準について述べる。

目次

用語[]

水平震度地震時に構造物にかかる水平加速度の重力加速度に対する比(例:水平震度0.1=0.1g)。気象庁が発表する揺れの大きさを表す震度と名称が似ているがまったく別の概念である。保有水平耐力「許容応力度等計算」という構造計算法においての二次設計に用いられる耐力。非常に大きな力を受けた場合、各部材は「弾性域」と呼ばれる復元可能な領域から「塑性域」と呼ばれる歪みを残留する領域に順次移行するが、それらが蓄積して、ある階を崩壊に至らしめるような水平力が存在する。これを以ってその階の保有水平耐力とする。どのような崩壊形を以って崩壊とするか、またその解析法についてはいくつか用意されており、同一の構造でも設計者の方針によって異なる数値となることがある。実務上では構造解析プログラムを用いて算定されるのが殆どである。

日本における耐震基準の変遷[]

  • 1920年(大正9年)12月1日 市街地建築物法(大正8年法律第37号)施行
第12条において、「主務大臣ハ建築物ノ構造、設備又ハ敷地ニ関シ衛生上、保安上又ハ防空上必要ナル規定ヲ設クルコトヲ得」と規定される。市街地建築物法施行規則(大正9年内務省令第37号)において、構造設計法として許容応力度設計法が採用され、自重と積載荷重による鉛直力にたいする構造強度を要求。ただし、この時点で地震力に関する規定は設けられていない。
  • 1923年(大正12年)9月1日 関東大震災
  • 1924年(大正13年) 市街地建築物法施行規則改正
許容応力度設計において、材料の安全率を3倍とし、地震力は水平震度0.1を要求。
  • 1950年(昭和25年)11月23日 市街地建築物法廃止、建築基準法施行(旧耐震)
具体的な耐震基準は建築基準法施行令(昭和25年政令338号)に規定された。許容応力度設計における地震力を水平震度0.2に引き上げた。
  • 1971年(昭和46年)6月17日 建築基準法施行令改正
1968年十勝沖地震の被害を踏まえ、RC造の帯筋の基準を強化した。
  • 1981年(昭和56年)6月1日 建築基準法施行令改正(新耐震)
一次設計、二次設計の概念が導入された。
  • 2000年(平成12年)6月1日 建築基準法及び同施行令改正
性能規定の概念が導入され、構造計算法として従来の許容応力度等計算に加え、限界耐力計算法が認められる。

現行規定[]

建築基準法の規定[]

  • 建築物の構造耐力は建築基準法第20条で以下のように規定されている。
建築物は、自重、積載荷重、積雪、風圧、土圧及び水圧並びに地震その他の震動及び衝撃に対して安全な構造のものとして、次に定める基準に適合するものでなければならない。
  1. 建築物の安全上必要な構造方法に関して政令で定める技術的基準に適合すること。
  2. 次に掲げる建築物にあつては、前号に定めるもののほか、政令で定める基準に従つた構造計算によつて確かめられる安全性を有すること。
イ 第6条第1項第2号又は第3号に掲げる建築物ロ イに掲げるもののほか、高さが13メートル又は軒の高さが9メートルを超える建築物で、その主要構造部(床、屋根及び階段を除く。)を石造、れんが造、コンクリートブロック造、無筋コンクリート造その他これらに類する構造造としたもの
  • 第6条第1項第2号に掲げる建築物=木造の建築物で3以上の階数を有し、又は延べ面積が500平方メートル、高さが13メートル若しくは軒の高さが9メートルを超えるもの
  • 第6条第1項第2号に掲げる建築物=木造以外の建築物で2以上の階数を有し、又は延べ面積が200平方メートルを超えるもの
  • 建築基準法第20条第1項による構造に関する技術的基準は、構造種類(木造、組積造、補強コンクリートブロック造、鉄骨造、鉄筋コンクリート造、鉄骨鉄筋コンクリート造、無筋コンクリート造)ごとに建築基準法施行令第3章第1節~第7節の2(第36条~第80条の3)にて定められている。
  • 建築基準法第20条第2項による構造計算法は建築基準法施行令第3章第8節(第81条~第106条)にて定められている。

構造計算法[]

現在、建築基準法施行令で認められている構造計算法は以下の4つである。

  1. 許容応力度等計算(施行令第82条-第82条の5)- 従来から用いられている方法。仕様規定とも呼ばれる。
  2. 限界耐力計算(施行令第82条の6)- 2000年の改正より新たに導入された方法。性能規定とも呼ばれる。
  3. エネルギー法 (施行令第81条ただし書き、平成17年国土交通省告示第631号)- 2004年より新たに導入された方法。
  4. 時刻歴応答解析(施行令第81条の2、平成12年建設省告示第1461号) - 高さ60mを超える超高層建築物では使用が義務づけられている
許容応力度等計算[]
  • 一次設計では構造耐力上主要な部分の地震時の応力度が許容応力度を超えないことを確認する(施行令第82条の1)。
  • 二次設計では地震による変形に関する計算および材料強度による耐力計算を行い、基準を満たすことを確認する(施行令第82条の2~4)。
建築物の種類一次設計(許容応力度計算)二次設計(保有水平耐力計算)
応力度(第82条の1)層間変形角(第82条の2)剛性率(第82条の3)偏心率(第82条の3)保有水平耐力(第82条の3)
多雪区域一般の区域
特定建築物以外の建築物G+P+0.35S+KG+P+K計算の必要なし
特定建築物高さ31m以下200分の1以内10分の6以上100分の15未満剛性率・偏心率が規定値外の場合下記を計算
高さ31m以上材料強度によって決まる各階の保有水平耐力がQun以上
  • Gは固定荷重による力、Pは積載荷重による力、Sは積雪荷重による力、Kは地震力による力。
  • 各部分の地震力による力Kは、以下の層せん断力Qiを各層に作用させて計算する(施行令第88条)。
Qi=∑Wi×Ci∑Wiは各階が支える上部の総重量(固定荷重+積載荷重。多雪区域では積雪荷重も加える)層せん断力係数Ci=Z×Rt×Ai×Co
  • 標準せん断力係数Co
一次設計(許容応力度計算)二次設計(水平保有耐力計算)
第三種地盤の木造建築物0.31.0
上記以外の建築物0.2
  • 高さ方向分布係数Ai
A i = 1 + ( 1 α i − α i ) 2 T 1 + 3 T {\displaystyle A_{i}=1+\left({\frac {1}{\sqrt {\alpha _{i}}}}-\alpha _{i}\right){\frac {2T}{1+3T}}} {\displaystyle A_{i}=1+\left({\frac {1}{\sqrt {\alpha _{i}}}}-\alpha _{i}\right){\frac {2T}{1+3T}}} α i {\displaystyle \alpha _{i}} はその階が支える上部の総重量を建築物の地上部分の総重量で割ったものTは建築物の一次固有周期
  • 振動特性係数Rt
T R t = 1 {\displaystyle R_{t}=1} {\displaystyle R_{t}=1}
Tc≦T<2Tc R t = 1 − 0.2 ( T T C − 1 ) 2 {\displaystyle R_{t}=1-0.2\left({\frac {T}{T_{C}}}-1\right)^{2}}
2Tc≦T R t = 1.6 T c T {\displaystyle R_{t}={\frac {1.6T_{c}}{T}}} {\displaystyle R_{t}={\frac {1.6T_{c}}{T}}}
Tは建築物の一次固有周期、Tcは地盤種別により0.4(第1種地盤)、0.6(第2種地盤)、0.8(第3種地盤)
  • 地震地域係数Z(昭和55年建設省告示第1793号第1)
地域地震地域係数Z
静岡1.2
北海道(根室・釧路・十勝・日高支庁)、青森(三八・上十三地区)、岩手、宮城、福島(浜通り全域、中通りのうち福島市、二本松市、田村市、伊達郡、安達郡、東白川郡、石川郡、田村郡)、栃木、群馬、茨城、埼玉、東京、千葉、神奈川、山梨、長野、富山(富山・高岡・砺波地区)、石川(奥能登地区以外)、福井、岐阜、愛知、三重、滋賀、京都、大阪、兵庫、奈良、和歌山、鳥取(因幡地方)、徳島(美馬・三好以外)、香川(大川・木田)、鹿児島(奄美地方)1.0
北海道(石狩・空知・後志・渡島・檜山・胆振支庁、上川支庁のうち富良野市、空知郡、勇払郡、上川郡南部、網走支庁のうち紋別以外)、青森(東青・中弘南黒・西北五・下北地区)、秋田、山形、福島(会津全域、中通りのうち郡山市、白河市、須賀川市、岩瀬郡、西白河郡)、新潟、富山(新川地区)、石川(奥能登地区)、鳥取(伯耆地方)、島根、岡山、広島、徳島(美馬・三好)、香川(大川・木田以外)、愛媛、高知、熊本(熊本市、人吉市、菊池市、阿蘇市、合志市、下益城郡、菊池郡、阿蘇郡、上益城郡、八代郡、球磨郡)、大分(大分市、別府市、佐伯市、臼杵市、津久見市、竹田市、豊後大野市、由布市、玖珠郡)、宮崎0.9
北海道(留萌・宗谷支庁、網走支庁のうち紋別市、紋別郡、上川支庁のうち旭川市、士別市、名寄市、上川郡北部、中川郡)、山口、福岡、佐賀、長崎、熊本(八代市、荒尾市、水俣市、玉名市、本渡市、山鹿市、牛深市、宇土市、上天草市、宇城市、玉名郡、鹿本郡、葦北郡、天草郡)、大分(中津市、日田市、豊後高田市、杵築市、宇佐市、東国東郡、速見郡)、鹿児島(奄美地方以外)0.8
沖縄0.7
静岡県の地震地域係数は建設省告示では1.0であるが、静岡県建築構造設計指針による静岡県地震地域係数によって1.2と定められている。
  • 一次設計の層間変形角は、地震力による構造耐力上主要な部分の変形によって特定建築物の部分に著しい損傷が生ずるおそれのない場合にあっては、120分の1以内でよい。
  • 各階の必要保有水平耐力Qunは以下により計算する(施行令第82条の4)。
Qun=Ds×Fes×QudDsは各階の構造特性係数(構造方法に応じた減衰性や靱性によって国土交通大臣が定める)Fesは各階の形状特性係数(剛性率及び偏心率に応じて国土交通大臣が定める)Qudは地震力によって各階に生じる水平力(上記QiにおいてCo=1.0としたもの)限界耐力計算[]
  • 一次設計(損傷限界)では地震による加速度によつて建築物の地上部分の各階に作用する地震力及び各階に生ずる層間変位を次に定めるところによつて計算し、当該地震力が、損傷限界耐力(建築物の各階の構造耐力上主要な部分の断面に生ずる応力度が短期に生ずる力に対する許容応力度に達する場合の建築物の各階の水平力に対する耐力)を超えないことを確かめるとともに、層間変形角が200分の1(地震力による構造耐力上主要な部分の変形によつて建築物の部分に著しい損傷が生ずるおそれのない場合にあつては、120分の1)を超えないことを確認する(施行令第82条の6の3)。
  • 二次設計(安全限界)では地震による加速度によつて建築物の各階に作用する地震力を次に定めるところによつて計算し、当該地震力が保有水平耐力を超えないことを確認する(施行令第82条の6の5)。
  • 損傷限界時と安全限界時の地震力は、それぞれ許容応力度等計算における許容応力度と保有水平耐力と同じになるように対応づけられている[要出典]。
一次設計(損傷限界)二次設計(安全限界)
損傷限界固有周期Td(s)損傷限界耐力Pdi(kN)安全限界固有周期Ts(s)保有水平耐力Psi(kN)
Td<0.16(0.64+6Td)×mi×Bdi×Z×GsTs<0.16(3.2+30Ts)×mi×Bsi×Fh×Z×Gs
0.16≦Td<0.641.6mi×Bdi×Z×Gs0.16≦Ts<0.648mi×Bsi×Fh×Z×Gs
0.64≦Td1.024mi×Bdi×Z×Gs/Td0.64≦Ts5.12mi×Bsi×Fh×Z×Gs/Ts
miは各階の質量を重力加速度で割ったもの、BdiとBsiは各階に生じる加速度の分布を表す係数、Zは地震地域係数、Gsは表層地盤増幅率、Fhは安全限界固有周期における振動の減衰による加速度の低減率エネルギー法[]

告示の「エネルギーの釣り合い基づく耐震計算等の構造計算」をしめす。

この節は執筆中です。加筆、訂正して下さる協力者を求めています
時刻歴応答解析[]
  • 建築基準法施行令第81条の2で以下のように規定されており、告示で定める性質を持つ地震波形を用いて動的に解析することが義務づけられている。
超高層建築物の構造計算は、建築物の構造方法、振動の性状等に応じて、荷重及び外力によつて建築物の各部分に生ずる力及び変形を連続的に把握することにより、建築物が構造耐力上安全であることを確かめることができるものとして国土交通大臣が定める基準に従つた構造計算によらなければならない。
  • 告示では地震力の大きさとして、解放工学的基盤(S波速度400m/s以上の地盤)における加速度応答スペクトル(減衰定数5%)の大きさ(告示スペクトル)が指示されている。
周期T(s)加速度応答スペクトル(m/s/s)
稀に発生する地震動(レベル1)極めて稀に発生する地震動(レベル2)
T<0.16(0.64+6T)Z(3.2+30T)Z
0.16≦T<0.641.6Z8Z
0.64≦T(1.024/T)Z(5.12/T)Z

ただし、Tは建築物の設計用一次固有周期(単位:s)、Zは地震地域係数である。

  • 使用する地震波の継続時間は60秒以上とされている。
  • 稀に発生する地震動によって建築物の構造耐力上主要な部分が損傷を受けないこと、極めて稀に発生する地震動によって建築物が倒壊、崩壊等しないことを確認する。

原子力発電所の耐震基準[]

原子力発電所の耐震基準は、「発電用原子炉施設に関する耐震設計審査指針」により規定されている。これは、1981年(昭和56年)に制定され、2006年(平成18年)に改定されたものである。多くの原子力発電所は1981年に制定された指針を元に設計されている。なお、指針制定前に作られた原発では、この指針とほぼ同じ方法が用いられているものの、動的解析に用いた波などが異なっている。以下では、原子力発電所に付属する建築物を中心に耐震設計の基準について述べる。

1981年の耐震設計審査指針

上述のように日本国内の多くの原子力発電所はこの指針に則った形で設計されている。以下、本文中ではこの指針を旧指針と表現する。

この中で、発電用原子炉施設をどのような場所に設置するかを以下のように述べている。「発電用原子炉施設は想定されるいかなる地震力に対してもこれが大きな事故の誘因とならないよう十分な耐震性を有していなければならない。また、建物・構築物は原則として剛構造にするとともに、重要な建物・構築物は岩盤に支持させなければならない。」このように、旧指針においては岩盤上に発電所本館を設置することが求められていた。

また、原子炉施設を重要度に応じて、地震により発生する可能性のある放射線による環境への影響の観点から、Aクラス、Bクラス、Cクラスの3段階(なお、Aクラスのうち最重要であるものはAsクラスに分類される)に分けられ、それぞれに応じて設計上の地震力が規定されている。

2006年の耐震設計審査指針

2006年9月19日に「発電用原子炉施設に関する耐震設計審査指針」として原子力安全委員会が決定したものである。以下現指針と表記する。

旧指針から約15年もの間旧指針が用いられてきた。しかし、その間にも地震学や地震工学において技術は格段に進歩したものの、それらの最新知見はほとんど反映されてこなかった。そこで、2006年に現指針が制定された。

旧指針では、前述の通り岩盤上に発電所本館等の重要施設を岩着することが求められていたが、現指針ではこれを「建物・構築物は、十分な支持性能を持つ地盤に支持されなければならない」に変更することとなった。

また、原子炉施設は重要度を四段階によるものから三段階のSクラス(旧指針におけるAsクラス、Aクラス)、Bクラス、Cクラスに変更した。

諸外国における耐震基準[]

ACI基準は Building Code Requirements for Structural Concrete and CommentaryASCE基準は Minimum Design Loads for Buildings And Other Structures

関連項目[]

  • 建築確認申請
  • 構造計算書偽造問題
  • 道路橋示方書
  • 構造計算用語

参考文献[]

  • 日本地震工学会 会誌第5号、2007年1月

外部リンク[]

  • 発電用原子炉施設に関する耐震設計審査指針(旧)
  • 発電用原子炉施設に関する耐震設計審査指針(新)

テンプレート:建築

・編・歴
地震
要素
パラメータ : 震源/震源域 - 発震機構
規模 : マグニチュード - 震度階級(震度(日本) - MM - MSK - EMS98 - 烈度)
種類
メカニズム
観測
地震動 : 地震計
変位 : 測地測量 - 傾斜計 - 歪計 - SAR - GPS - VLBI
被害と対策
被害 : 震災 - 土砂災害 - 液状化 - 海震 - 津波  • 過去の地震年表
対策 : 地震工学 - 耐震/制震/免震 - 耐震基準 - 耐震診断 - 感震計 - 早期警戒システムユレダス - 緊急地震速報 - SAS)- 日本の地震対策
地震予知
地震学
地震発生物理学 - 強震動地震学 - 地球内部物理学
関係機関 : 気象庁松代地震センター - 精密地震観測室) - 防災科研 - 東大地震研 - USGS - EMSC - CSA - ISS - ITIC - IRIS - IASPEI
地球以外の地震
月震 - 日震 - その他
関連カテゴリ : 地震 - 地震学 - 地震学者 - 断層 - 津波 - 震度階級 - 地震の歴史
執筆の途中ですこの項目「耐震基準」は建築・土木に関連した書きかけの項目です。加筆、訂正などをして下さる協力者を求めています(ポータル 建築/ウィキプロジェクト 建築)。


特に記載のない限り、コミュニティのコンテンツはCC BY-SAライセンスの下で利用可能です。

シェアボタン: このページをSNSに投稿するのに便利です。


最近更新されたページ

左メニュー

左メニューサンプル左メニューはヘッダーメニューの【編集】&gt;【左メニューを編集する】をクリックすると編集できます。ご自由に編集してください。掲示板雑談・質問・相談掲示板更新履歴最近のコメントカウン...

龍神温泉

♨龍神温泉ファイル:Ryujin Spa1.jpg.JPG日高川沿いに並ぶ旅館温泉情報所在地和歌山県田辺市龍神村交通アクセスバス - 龍神バス:バス停「龍神温泉」・「季楽里龍神」車 - 高野龍神スカイ...

鼓川温泉

♨鼓川温泉温泉情報所在地山梨県山梨市牧丘町交通アクセス車:中央自動車道 勝沼ICより、国道140号を経由して乙女高原方面へ鉄道:中央本線塩山駅より牧丘町塩平方面行きバス、鼓川温泉下車泉質単純温泉泉温3...

黒薙温泉

♨黒薙温泉ファイル:Kuronagi-onsen01.JPG混浴露天風呂(2007年)温泉情報所在地富山県黒部市宇奈月温泉交通アクセスアクセスの項を参照泉質単純温泉泉温97.2 セルシウス度|テンプレ...

黒羽温泉

♨黒羽温泉温泉情報所在地栃木県大田原市黒羽交通アクセス鉄道 : 宇都宮線西那須野駅よりタクシー・車で約35分車 : 東北自動車道西那須野塩原インターチェンジより40分、那須インターチェンジより約30分...

黒石温泉郷

黒石温泉郷(くろいしおんせんきょう)は、青森県黒石市(旧国陸奥国)の奥座敷に位置する温泉の総称(温泉郷)である。浅瀬石川沿いに長寿温泉、温湯温泉、落合温泉、板留温泉の4つが存在。前述の4温泉から山間部...

黒湯

曖昧さ回避この項目では、黒色の温泉について記述しています。秋田県仙北市にある温泉については「黒湯温泉」をご覧ください。黒湯(くろゆ)とは、主に湯船における湯の色が黒色、黒褐色をした源泉のことを指す。東...

黒沢温泉

♨黒沢温泉温泉情報所在地山形県山形市交通アクセス鉄道:奥羽本線(山形線) 蔵王駅より徒歩約10分泉質硫酸塩泉宿泊施設数7 表・話・編・歴 黒沢温泉(くろさわおんせん、Kurosawa Hot Spri...

黒松内温泉

♨黒松内温泉温泉情報所在地北海道寿都郡黒松内町交通アクセスJR北海道函館本線黒松内駅より車で約5分泉質塩化物泉泉温39.9 セルシウス度|テンプレート:℃湧出量400リットル(毎分)宿泊施設数1 表・...

黒川温泉_(兵庫県)

♨黒川温泉ファイル:黒川温泉1.JPG温泉情報所在地兵庫県朝来市生野町黒川交通アクセス車 : 播但連絡道路生野ランプより車で約30分鉄道 : 播但線生野駅から神姫グリーンバス生野駅裏より「黒川」行き終...

黒島_(鹿児島県)

日本 > 鹿児島県 > 鹿児島郡 > 三島村 > 黒島黒島 (鹿児島県)ファイル:Kuroshima of Kagoshima.jpg東方上空より撮影座標北緯30度50分5.6秒東経129度57分20...

黒岳_(大分県)

黒岳標高1,587m所在地大分県由布市位置北緯33度06分20秒東経131度17分34秒山系九重山系ウィキプロジェクト 山ウィキプロジェクト 山黒岳(くろだけ)は、大分県由布市庄内町及び竹田市久住町に...

黒姫山_(長野県)

曖昧さ回避この項目では、長野県信濃町の黒姫山について記述しています。新潟県糸魚川市の黒姫山については「黒姫山 (糸魚川市)」を、その他の黒姫山については「黒姫山」をご覧ください。黒姫山ファイル:Mt-...

黄金崎不老不死温泉

♨黄金崎不老不死温泉ファイル:Furofushi-spa.jpg混浴露天風呂温泉情報所在地青森県西津軽郡深浦町大字舮作字下清滝15交通アクセス鉄道:五能線艫作駅より徒歩約15分。リゾートしらかみ利用の...

黄砂

この記事は秀逸な記事に選ばれました。詳細はリンク先を参照してください。曖昧さ回避オユンナの楽曲およびアルバムについては「オユンナII黄砂」をご覧ください。ファイル:Asian Dust in Aizu...

鹿部温泉

♨鹿部温泉ファイル:Sikabe kanketusen 2005.jpgしかべ間歇泉公園内の間欠泉温泉情報所在地北海道茅部郡鹿部町交通アクセス鹿部駅よりバスで20分。函館市内より車で約1時間。泉質食塩...

鹿塩温泉

♨鹿塩温泉温泉情報所在地長野県下伊那郡大鹿村交通アクセス鉄道 : 飯田線伊那大島駅より伊那バス大鹿線で約50分で最寄バス停鹿塩へ。バス停より徒歩約15分泉質塩化物泉泉温14 セルシウス度|テンプレート...

鷹巣温泉

♨鷹巣温泉温泉情報所在地福井県福井市蓑町22字17番1交通アクセス鉄道 : 福井駅から路線バスで50分車:北陸自動車道福井北ICより45分泉質アルカリ性単純温泉アルカリ性低張性高温泉泉温49 セルシウ...

鷹の子温泉

♨鷹の子温泉温泉情報所在地愛媛県松山市交通アクセス伊予鉄道横河原線久米駅下車徒歩7分泉質単純硫黄温泉泉温38.4 セルシウス度|テンプレート:℃湧出量毎分800リットルpH9.3液性の分類アルカリ性 ...