🐎🐎🐎 lets study mathmatics :
🐎 mathmatics, helps to read " Maxwell and Faraday's equations"
🐎 1 multiple number calculation & divide number calculation
🐎 2 mathmatical meaning of ^
🐎 3 mathmatical meaning of function = f(x):
🐎 4 mathmatical meaning of division of function = f(x) /Δx
🐎 5 mathmatical meaning of 3 axis function: f (x, z) = y
🐎 6 mathmatical meaning of vector:
🐎 7 mathmatical meaning of 1⃣ rotation of vector
🐎 7 mathmatical meaning of 2⃣ divergence of vector
🐎 1 multiple number calculation & divide number calculation
🐎 2 mathmatical meaning of ^
usually,
10^2 = 10・10 = 100
12^2 = 12・12 = 144
2^4 = 2・2・2・2 = 16
10^8 = 10・10・10・10・10・10・10・10 = 100000000
3^8 = 3・3・3・3・3・3・3・3 = 6561
🐎 3 mathmatical meaning of function y = f(x):
y = f(x) represent string, in X, Y axis.
x & y means changeable number.
when number x changes, number y also changes.
lets practice calculation:
🐎f(x) = 10・x
if x = 1 f(x) = 10・1 = 10
if x = 10 f(x) = 10・10 = 10
🐎f(x) = x・x
if x = 1 f(x) = 1・1 = 1
if x = 10 f(x) = 10・10 = 100
🐎f(x) = x・x・x・x・x
if x = 1 f(x) = 1・1・1・1・1 = 1
if x = 10 f(x) = 10・10・10・10・10 = 100000
🐎 4 mathmatical meaning of division of function y = f(x) /Δx
y = f(x) /Δx = f ' (x)
= tilt of function f(x), with
change of f(x)
lets practice calculation:
🐎 y = f(x) = 10・x,
tilt of function = f ' (x) = 10 (always)
🐎 y = f(x) = x・x,
tilt of function = f ' (x) = 2・x
🐎 y = f(x) = x・x・x,
tilt of function = f ' (x) = 3・x・x
if x = 12 y = 1728
🐎 5 mathmatical meaning of 3 axis function: f (x, z) = y
f (x, z) = y, represent string in X, Y, Z axis.
🐎 6 mathmatical meaning of vector:
every vector can show
with 3 right angle axis
F (sum of directions) = F(x) + F(y) + F(z)
F : Power
(1,1,1), means x = 1, y =1, z = 1
🐎 mathmatical meaning of scalar of vector :
(1,1,1)・(1,3,7) = 1・1 + 1・3 + 1・7 = 11
(1,1,1)・(1,3,18) = 1・1 + 1・3 + 1・18 = 1 + 3 + 18 = 22
(1,2,3)・(3,5,6) = 1・3 + 2・5 + 3・6 = 3 + 10 + 18 = 31
(1,51,85)・(1,50,60) = 1・1 + 51・50 + 85・60 = 1 + 2550 + 5100 = 7651
🐎 mathmatical meaning of transfer vector : () T
change row <> column direction of vector.
(1,1,1) (1,1,1)T = (1・1, 1・1, 1・1) = (1, 1, 1)
(2,2,2)・(2,2,2)T = (2・2, 2・2, 2・2) = (4, 4, 4)
(1,1,1)・(1,3,7)T = (1・1, 1・3, 1・7) = (1, 3, 7)
(3,3,3)・(3,3,3)T = (3・3, 3・3, 3・3) = (9, 9, 9)
(1,1,1)・(1,3,18)T = (1・1, 1・3, 1・18) = (1, 3, 18)
(1,2,3)・(3,5,6)T = (1・3, 2・5, 3・6) = (3, 10, 18)
(1,2,3)・(1,2,3)T = (1・1, 2・2, 3・3) = (1, 4, 9)
🐎mathmatical meaning of 1⃣ rotation of vector
▽ rotation of vector : ▽ rotation of vector = ▽α
▽α F
= ▽α (F(e), F(m), F(s))
= (F(s)/Δm - F(m)/Δs, F(e)/Δs - F(s)/Δe, F(e)/Δm - F(m)/Δe)
🐎 7 mathmatical meaning of 2⃣ divergence of vector
mathmatical " vector divergence " code == ▽v
Force = (F(x), F(y), F(z))= F(x) + F (y) + F (z)
|
divergence of F= ▽v F
▽v F = ▽v ( F(x), F(y), F(z)) = ( F(x)/Δ(x), F(y)/Δ(y), F(z)/Δ(z) ) |
コメント
最新を表示する
NG表示方式
NGID一覧