ヘリウム

ページ名:ヘリウム
水素 - ヘリウム (- リチウム)
He
Ne
ファイル:He-TableImage.png
周期表
一般特性
名称, 記号, 番号ヘリウム, He, 2
分類希ガス
族, 周期, ブロック18 (0), 1 , s
密度, 硬度0.1785 kg·m−3, no data
単体の色無色
ヘリウム
原子特性
質量6.6466 x 10-24 g
原子量4.002602 u
原子半径 (計測値)no data (31) pm
共有結合半径32 pm
VDW半径140 pm
電子配置1s2
電子殻2
酸化数(酸化物)0(no data)
結晶構造六方晶系
物理特性
気体
融点1.0 K (at 2.6 MPa)
(-272.2 ℃, -458.0 °F)
沸点4.216 K
(-268.934 ℃, -452.081 °F)
モル体積21.0 × 10−3 m3·mol−1
気化熱0.0845 kJ·mol−1
融解熱5.23 kJ·mol-1
蒸気圧no data
音の伝わる速さ970 m·s−1 (293.15 K)
その他
クラーク数8×10-7%
電気陰性度no data (ポーリング)
比熱容量5193 J·kg−1·K−1
導電率no data
熱伝導率0.152 W·m−1·K−1
イオン化エネルギー第1: 2372.3 kJ·mol−1
第2: 5205.5 kJ·mol−1
CAS登録番号[7440-59-7]
(比較的)安定同位体
同位体NA半減期DMDE/MeVDP
3He0.000137%中性子1個で安定
4He99.999863%中性子2個で安定
6He{syn.}807 ミリ秒β-3.5086Li
注記がない限り国際単位系使用及び標準状態下。

ヘリウム (Helium) は原子番号 2、元素記号 He の元素。無色、無臭、無味、無毒で最も軽い希ガス元素である。すべての元素の中で最も沸点が低く、加圧下でしか固体にならない。ヘリウムは不活性の単原子ガスとして存在する。また、存在量は水素に次いで宇宙で2番目に多い。ヘリウムは地球大気の0.0005%を占め、鉱物やミネラルウォーターのなかにも溶け込んでいる。天然ガスと共に豊富に産出し、気球や小型飛行船の浮揚用ガスとして用いられたり、液体ヘリウムを超伝導用の低温素材としたり、深海へ潜る際の呼吸ガスとして用いられている。

目次

特徴[]

標準状態ではヘリウムは単原子ガスとしてのみ存在できる。ヘリウムを固化するには非常に特殊な条件下におかなければならない。元素の中で沸点が最も低く、標準圧力下では温度を下げて絶対零度になっても液体のままであり、固化するにはさらに高い圧力をかける必要がある。液体とガスの臨界温度の差は 5.19 K しかない。固体ヘリウムは ヘリウム3 と ヘリウム4 で必要な圧力が異なり、圧力を調節して体積の30%をコントロールすることができる。ヘリウムは比熱容量が非常に高く、密度の高い蒸気となり、部屋の温度が上昇すると素早く膨張する。

固体ヘリウムは 1.5 K、2.5-3.5 MPa という非常に低い温度と高い圧力の下でしか存在できない。だいたいこのくらいの温度以上になると相転移を起こしてしまう。これ以下の温度ではそれぞれ立方体型の分子を作っている。

ヘリウム-4の2つの液体状態、ヘリウムIとヘリウムIIは、量子力学の研究(超流動現象)において重要で、物質が超伝導を帯びるような絶対零度に近い超低温で発現する。

用途[]

ヘリウムは空気よりも軽いため、浮揚用ガスとして使われ、広告用バルーンや天体観測用気球、軍事用偵察気球などに使用されている。ヘリウムは水素の92.64%もの浮揚力があり、燃えないため、水素よりも安全なガスとして風船のガスなど広く利用されている。

以下のような他の用途がある。

  • ヘリウムと酸素の混合ガスはテクニカルダイビングなど、深海潜水用の呼吸ガスとして用いられる。ヘリウムは窒素よりも麻酔作用が少ないため、窒素中毒を起こしにくく、さらに粘度が低いため、高圧下でも呼吸抵抗が小さく、身体からの排泄速度が速いため、使い方によっては減圧症になる可能性を低減できる。欠点として熱伝導率が高いため、体温調節が難しくなり低体温症になる危険があること、また空気と比較してはるかに高価であることがある。
  • ヘリウム中では音速が空気中よりずっと速い(純粋ヘリウム中では約1000m/s)ため[1]、ヘリウムを吸入してから発声すると、甲高い音色の奇妙な声が出る(ドナルドダック効果)。これに着目して、いわゆるパーティグッズとしても利用される。ヘリウムに毒性はないが、酸素を混入していないヘリウムを吸入したことによる酸欠事故がまれに起こっている。
  • ヘリウムは沸点、融点ともに最も低い元素であり、液体ヘリウムは他の超低温物質よりも低温となり、超伝導や低温学など、絶対零度に近い環境での研究が必要な分野で冷媒として使用されている。また、ヘリウム3とヘリウム4を使った希釈冷凍法がある。
  • 能美防災の民生用蓄圧式消火器には、窒素の代わりに圧力源として使われている。
  • ガスクロマトグラフィーなどの搬送ガスとしても使用される。
  • 水素爆弾では水素がヘリウムになる核融合反応が使用されている。
  • 液体ヘリウムはロケットの噴射口を守る冷却剤、シリコンやゲルマニウム結晶の保護材、あるいは原子炉の冷却材、超音速風洞実験での充満ガスとして用いられている。
  • 同位体であるヘリウム3は核融合発電の燃料としての利用が考えられている。しかし、現在熱核融合炉で想定されている温度の領域では、トリチウム燃料の場合に比べて核融合反応が起こりにくい上、地球上で天然に採取する事はほとんど不可能である。太陽から噴出した太陽風が月面に堆積した物を採取する、木星などの木星型惑星で採取する等の方法が検討されている。
  • 液体ヘリウムはNMRやMRIの測定装置で超伝導電磁石の冷却に使われている。
  • ヘリウムは分子が小さく、きわめて微小な孔にも浸入可能であるため (ヘリウムを詰めた風船が時間が経つと小さくしぼみ、浮力が落ちるのはこのためである)、配管のリーク(漏れ)を高精度で非破壊検査するのに用いられることがある(配管に気体のヘリウムを流してヘリウムリークディテクタで漏れを検知する)。前述の特徴のほか、化学的に安定で人畜に無害、また大気中にほとんど存在しないため誤検出の心配がないなど、この用途には理想的な物質であるとされている。

歴史[]

ヘリウム (英: Helium、テンプレート:Lang-el-short、helios、太陽に由来)は1868年にフランスのピエール・ジャンサンとイギリスのノーマン・ロッキャーがそれぞれ別個に存在を予言した。二人ともその年にあった日食の太陽光線について研究をしており、分光学での輝線スペクトルから未知の元素があることに気付いた。エドワード・フランクランドがジャンセンの予言を立証し、さらにその元素が太陽の観測から発見されたことから、ギリシャ神話の太陽神ヘリオスの名に -ium をつけた名前を提案した。-ium は本来金属につけるラテン語の派生名詞中性語尾だが、これはこの時点でヘリウムが金属と思われていたからだった。元素記号 He はその頭文字である。1895年にイギリスのウィリアム・ラムゼー卿によりウラン鉱石からヘリウム単体が取り出され、精製した結果金属でないことがわかったが、名前が変更されることはなかった。スウェーデンの化学者ニールス・ラングレットとペール・テオドール・クレーベはラムゼーと別個にヘリウムの分離に成功していた。

1907年にアーネスト・ラザフォードとトーマス・ロイズはアルファ粒子がヘリウムの原子核(ヘリウム4)であることを発見した。また、1908年オランダのヘイケ・カメルリング・オネスは 0.9Kまで温度を下げることで液体ヘリウムを初めて製造した。この偉業により彼は1913年にノーベル賞を受けている。また、オネスの弟子であるウィレム・ヘンドリック・ケーソンは1926年に初めて固体ヘリウムを作ることに成功した。

供給源[]

ヘリウムは地球の大気中に5ml/m3しか含まれていないため、産業的な供給源は北アメリカ産やアルジェリア産の天然ガスから得ている。これらのガスには、岩石中の放射性元素が自然に核崩壊して生じたヘリウムが1 - 7%含まれている。

ヘリウムの供給源は偏在しており、アメリカ合衆国が最大の供給元である。そのためアメリカ合衆国は、ヘリウムを国家戦略物質として取り扱い、その供給量を毎年調整していた。しかし近年、MRIなどの冷媒用などにヘリウムの需要が急拡大しており、その供給が追いついていない状況にある。また、ヘリウム供給の施設は老朽化が激しく改修も進んでおらず、現在の供給不足の状況は当分続くと思われる。そこでアメリカ合衆国は2007年に方針転換し、それまで供給調整のため大量に備蓄していた液体ヘリウムまで市場へ販売するようになっている。これにより、ヘリウム市場の供給と需要は何とかバランスを保っている。ただし、その備蓄している液体ヘリウムが状況改善前に底をつけば、深刻なヘリウム不足と価格高騰が予測される[2]

消費[]

デパートチェーンのメイシーズは、感謝祭のパレードで披露する巨大なキャラクターの風船にヘリウムを使用しており、アメリカ軍に次いで世界第二のヘリウム消費者となっている。

同位体[]

ヘリウム原子の原子核は 2つの陽子と2つの中性子からなり、周りを2つの電子が回って構成される(ヘリウム4)。同位体にヘリウム3(陽子 2、中性子 1、電子 2)がある。

ヘリウム3は、天然には非常に僅かしか存在しないので、原子炉で生成したものが利用される。原子炉内で、リチウム6に中性子を当てると、三重水素とヘリウム4ができ、この三重水素がベータ崩壊して、ヘリウム3となる(半減期12.5年)。

そのほか、人工的に作られた同位体としては、ヘリウム6、ヘリウム8、ヘリウム10などがある。

ヘリウムの同位体を用いた地球化学的な応用は大きく分けて2つある。まず、ヘリウム3をトレーサーとした地球物質の循環を探ることができる。もうひとつは岩石中に天然に存在する放射性同位体であるウランやトリウムの放射壊変(アルファ崩壊)に伴って放出されるヘリウム4の蓄積量から、その岩石の生成年代を求めることができる(U, Th/He 放射年代測定)。

関連項目[]

ウィキメディア・コモンズ
ウィキメディア・コモンズには、ヘリウムに関連するマルチメディアおよびカテゴリがあります。
  • 超流動

脚注[]

  1. 共鳴の起こる波長(喉頭腔の大きさに依存)を一定とすると、周波数はその媒質を伝わる波の速さに比例する。周波数#定義を参照。
  2. サイエンス日本語版2007年12月号
1元素の周期表18
1H21314151617He
2LiBeBCNOFNe
3NaMg3456789101112AlSiPSClAr
4KCaScTiVCrMnFeCoNiCuZnGaGeAsSeBrKr
5RbSrYZrNbMoTcRuRhPdAgCdInSnSbTeIXe
6CsBa*HfTaWReOsIrPtAuHgTlPbBiPoAtRn
7FrRa**RfDbSgBhHsMtDsRg...
*LaCePrNdPmSmEuGdTbDyHoErTmYbLu
**AcThPaUNpPuAmCmBkCfEsFmMdNoLr

af:Heliumar:هيليومast:Heliu (elementu)be:Гелійbe-x-old:Гелійbg:Хелийbn:হিলিয়ামbr:Heliombs:Helijumca:Helico:Eliucs:Heliumcv:Гелиcy:Heliwmda:Heliumel:Ήλιοeo:Heliumoet:Heeliumeu:Heliofa:هلیمfi:Heliumfo:Heliumfur:Eliga:Héiliamgd:Hegl:Heliogu:હીલિયમgv:Hailiumhaw:Hiliumahe:הליוםhi:हिलियमhr:Helijhsb:Heliumht:Elyòmhu:Héliumhy:Հելիումid:Heliumio:Heliois:Helínit:Eliojbo:solnavnijv:Heliumka:ჰელიუმიkn:ಹೀಲಿಯಮ್ksh:Heliumku:Hêlyûmkv:Гелийla:Heliumlb:Heliumli:Heliumlmo:Eliln:Eliyúmult:Helislv:Hēlijsmi:Haumāmāmk:Хелиумml:ഹീലിയംmr:हेलियमms:Heliumnah:Tōnatiuyohnds:Heliumnl:Heliumnn:Heliumno:Heliumnov:Heliumoc:Èlipa:ਹੀਲਿਆਮpl:Hel (pierwiastek)pt:Hélioqu:Ilyuro:Heliusa:हीलियमsh:Helijsimple:Heliumsk:Héliumsl:Helijsr:Хелијумsu:Héliumsv:Heliumsw:Helita:ஹீலியம்te:హీలియంtg:Гелийth:ฮีเลียมtr:Helyumuk:Гелійuz:Geliyvi:Helivls:Heliumyi:העליוםzh-classical:氦zh-min-nan:He (goân-sò͘)zh-yue:氦



特に記載のない限り、コミュニティのコンテンツはCC BY-SAライセンスの下で利用可能です。

シェアボタン: このページをSNSに投稿するのに便利です。


最近更新されたページ

左メニュー

左メニューサンプル左メニューはヘッダーメニューの【編集】>【左メニューを編集する】をクリックすると編集できます。ご自由に編集してください。掲示板雑談・質問・相談掲示板更新履歴最近のコメントカウン...

龍神温泉

♨龍神温泉ファイル:Ryujin Spa1.jpg.JPG日高川沿いに並ぶ旅館温泉情報所在地和歌山県田辺市龍神村交通アクセスバス - 龍神バス:バス停「龍神温泉」・「季楽里龍神」車 - 高野龍神スカイ...

鼓川温泉

♨鼓川温泉温泉情報所在地山梨県山梨市牧丘町交通アクセス車:中央自動車道 勝沼ICより、国道140号を経由して乙女高原方面へ鉄道:中央本線塩山駅より牧丘町塩平方面行きバス、鼓川温泉下車泉質単純温泉泉温3...

黒薙温泉

♨黒薙温泉ファイル:Kuronagi-onsen01.JPG混浴露天風呂(2007年)温泉情報所在地富山県黒部市宇奈月温泉交通アクセスアクセスの項を参照泉質単純温泉泉温97.2 セルシウス度|テンプレ...

黒羽温泉

♨黒羽温泉温泉情報所在地栃木県大田原市黒羽交通アクセス鉄道 : 宇都宮線西那須野駅よりタクシー・車で約35分車 : 東北自動車道西那須野塩原インターチェンジより40分、那須インターチェンジより約30分...

黒石温泉郷

黒石温泉郷(くろいしおんせんきょう)は、青森県黒石市(旧国陸奥国)の奥座敷に位置する温泉の総称(温泉郷)である。浅瀬石川沿いに長寿温泉、温湯温泉、落合温泉、板留温泉の4つが存在。前述の4温泉から山間部...

黒湯

曖昧さ回避この項目では、黒色の温泉について記述しています。秋田県仙北市にある温泉については「黒湯温泉」をご覧ください。黒湯(くろゆ)とは、主に湯船における湯の色が黒色、黒褐色をした源泉のことを指す。東...

黒沢温泉

♨黒沢温泉温泉情報所在地山形県山形市交通アクセス鉄道:奥羽本線(山形線) 蔵王駅より徒歩約10分泉質硫酸塩泉宿泊施設数7 表・話・編・歴 黒沢温泉(くろさわおんせん、Kurosawa Hot Spri...

黒松内温泉

♨黒松内温泉温泉情報所在地北海道寿都郡黒松内町交通アクセスJR北海道函館本線黒松内駅より車で約5分泉質塩化物泉泉温39.9 セルシウス度|テンプレート:℃湧出量400リットル(毎分)宿泊施設数1 表・...

黒川温泉_(兵庫県)

♨黒川温泉ファイル:黒川温泉1.JPG温泉情報所在地兵庫県朝来市生野町黒川交通アクセス車 : 播但連絡道路生野ランプより車で約30分鉄道 : 播但線生野駅から神姫グリーンバス生野駅裏より「黒川」行き終...

黒島_(鹿児島県)

日本 > 鹿児島県 > 鹿児島郡 > 三島村 > 黒島黒島 (鹿児島県)ファイル:Kuroshima of Kagoshima.jpg東方上空より撮影座標北緯30度50分5.6秒東経129度57分20...

黒岳_(大分県)

黒岳標高1,587m所在地大分県由布市位置北緯33度06分20秒東経131度17分34秒山系九重山系ウィキプロジェクト 山ウィキプロジェクト 山黒岳(くろだけ)は、大分県由布市庄内町及び竹田市久住町に...

黒姫山_(長野県)

曖昧さ回避この項目では、長野県信濃町の黒姫山について記述しています。新潟県糸魚川市の黒姫山については「黒姫山 (糸魚川市)」を、その他の黒姫山については「黒姫山」をご覧ください。黒姫山ファイル:Mt-...

黄金崎不老不死温泉

♨黄金崎不老不死温泉ファイル:Furofushi-spa.jpg混浴露天風呂温泉情報所在地青森県西津軽郡深浦町大字舮作字下清滝15交通アクセス鉄道:五能線艫作駅より徒歩約15分。リゾートしらかみ利用の...

黄砂

この記事は秀逸な記事に選ばれました。詳細はリンク先を参照してください。曖昧さ回避オユンナの楽曲およびアルバムについては「オユンナII黄砂」をご覧ください。ファイル:Asian Dust in Aizu...

鹿部温泉

♨鹿部温泉ファイル:Sikabe kanketusen 2005.jpgしかべ間歇泉公園内の間欠泉温泉情報所在地北海道茅部郡鹿部町交通アクセス鹿部駅よりバスで20分。函館市内より車で約1時間。泉質食塩...

鹿塩温泉

♨鹿塩温泉温泉情報所在地長野県下伊那郡大鹿村交通アクセス鉄道 : 飯田線伊那大島駅より伊那バス大鹿線で約50分で最寄バス停鹿塩へ。バス停より徒歩約15分泉質塩化物泉泉温14 セルシウス度|テンプレート...

鷹巣温泉

♨鷹巣温泉温泉情報所在地福井県福井市蓑町22字17番1交通アクセス鉄道 : 福井駅から路線バスで50分車:北陸自動車道福井北ICより45分泉質アルカリ性単純温泉アルカリ性低張性高温泉泉温49 セルシウ...

鷹の子温泉

♨鷹の子温泉温泉情報所在地愛媛県松山市交通アクセス伊予鉄道横河原線久米駅下車徒歩7分泉質単純硫黄温泉泉温38.4 セルシウス度|テンプレート:℃湧出量毎分800リットルpH9.3液性の分類アルカリ性 ...