熱塩循環

ページ名:熱塩循環

熱塩循環(ねつえんじゅんかん、Thermohaline circulation)は、おもに中深層(数百メートル以深)で起こる地球規模の海洋循環を指す言葉である。語源の thermo は熱、haline は塩分の意味で海水の密度はこの熱と塩分により決定される。メキシコ湾流のような表層海流が、赤道大西洋から極域に向かうにつれて冷却し、ついには高緯度で沈み込む(北大西洋深層水の形成)。この高密度の海水は深海底に沈み、1200年後に北東太平洋に達して再び表層に戻る。その間それぞれの海盆の間で広範囲に渡って混合が起こり均一化することで海洋の世界的なシステムを作っている。この過程で、水塊は(熱)エネルギーと物質(固体、溶解物質、ガス)を運んで地球上を移動する。このように、循環現象は地球の気候に大きな影響を与えている。

ファイル:Weltfoerderband.png

熱塩循環と表層で起こる風成循環とを合わせて、海洋大循環と呼ぶ。熱塩循環は大循環、深層大循環、グローバルコンベアーベルトとも呼ばれる。海水が南北に移動し表面近くと深層の間を行き来することにより特徴付けられるため、子午面循環(英語で meridional overturning circulation)と呼ばれることもある。

目次

システム[]

表層海流が風によって起こるということは、例えば池の表面に風によってさざなみが立つのを見ることで直感的に理解できる。したがって昔の海洋学者は、深海では風の影響が無いので完全に静止した世界であろうと考えていた。しかし現在の計測機器の発達により深海にも、潮汐による流れに加えて、表層よりかなり弱いながらも海流があるということがわかってきた。深層の流れを駆動するおもな原因は密度の違いと考えられていたが、近年の研究では風がおもな駆動力の起源という説が有力である[1]

海水の密度は全地球で一様ではなく、その違いは明瞭で不連続である。表層で形成される水塊の間には明瞭な境界が存在し、その性質を維持している。軽い水塊が重い水塊の上に乗るというように(木片や氷が水に浮くように)、形成された時の状態で決まる密度によって、重い方が潜り込み軽い方乗り上げるというような状態を示す。海水の密度は、温度と塩分と圧力によって決まる。冷たい海水、塩分の多い海水は、それぞれ温かい海水、塩分の少ない海水より高密度になる。水塊は最も安定した状態を保つため流動する。

ただ注意が必要なのは、海洋に温度と塩分を与えるのが表面だけである点である(地熱の効果は小さい[2])。水槽に水を入れ表面の一部を温め他の表面の一部を冷やす実験では、定常な鉛直流は生じない。上層の温かい水と下層の冷たい水を混合するメカニズムが必要になる。この混合は潮汐や風の効果によって生じると考えられている。

風は以上の混合の効果に加え、陸との相互作用やエクマン流で表面と中深層の海水交換を駆動する。エネルギーで見ると風が主な駆動力と考えられているが、密度効果や潮汐による混合を含めたそれぞれの寄与はよく分かっていない。そのため密度効果のみと誤解されうる熱塩循環という呼び方を避けた他の呼び方(上記参照)が多く使われるようになってきた。

深層水の形成[]

海底に沈みこむ密度の高い水塊は、北大西洋と南極海という限られた海域で形成される。この海域で海水は風により冷却され、また海氷形成時に氷から排出される塩分で塩分濃度を増加させる。塩分の増加が海水の凍結温度を下げ、蜂の巣状の海氷の中でさらに冷却された塩水(ブライン)が形成されることで非常に重くなり、氷からゆっくり零れ落ちて海底に沈みこむ。これらの深層水塊は重いので、より軽い海水を押しのけて下るように沈み込んで極域の海盆を満たす。ちょうど陸上の渓谷や河川のように、低層水塊は海底の地形に沿って移動する。

ノルウェー海では風による冷却が主な原因で沈み込んだ水塊北大西洋深層水(NADW)が海盆に広がり、グリーンランドやアイスランドやイギリス沖を繋げる深海のシル(海盆を分断する相対的に浅い海嶺)の裂け目を移動しながら、非常にゆっくりと大西洋の深海平原を南に向って流れている。北部大西洋でこのように沈み込んだ水塊は、ベーリング海峡が非常に浅く狭いため、太平洋に流れ出すことはない。

一方南極海の北部、ウェッデル海の海氷の縁部では、風による冷却に加えブラインの排出が活発である。これにより形成された南極低層水(AABW)が沈み込み大西洋海盆に向かって北方へ流れ出すが、非常に重いので北大西洋深層水の下部に潜り込んでいる。この水塊は南極半島と南アメリカの最南端の間のドレーク海峡によって阻まれ、北大西洋深層水同様に太平洋へ流入することはない。

深層水塊の動き[]

以上のようにおもに大西洋で形成された深層水は、大西洋海盆から南アフリカ沖を経由して、インド洋に流れ込み、オーストラリアから太平洋海盆へと移動する。インド洋と太平洋では深層水は表面の海水と混合する。この混合に伴う上昇流は非常に遅いため、流速を計って上昇流の発生場所を調べるのは海洋表層で起きる風成循環と比べて大変に難しい。しかし深層水は深海で長い移動の途中で物質が沈んで分解したことによって化学的な特徴を持つので、これを北太平洋の表層で探すことで大規模な上昇流が起こる場所を知ることができる。

また計算機シミュレーションを用いることにより、深層水塊の動きを追跡することもできる。これによりインド洋と太平洋における混合以上に、南アメリカ大陸と南極大陸の間の緯度で吹く卓越風により、南極海で強い上昇流があることが分かってきた[3]。この結果は、海洋の拡散係数の観測とも一致する。しかし一方ではこれに反する観測結果もあり[4]、深層水塊の動きは未知の部分が多い。

地球の気候への影響[]

熱塩循環は極域の熱収支に大きくかかわり、全地球の海氷の量にも影響を及ぼす。また、地球の放射収支にも大きな影響がある。圧倒的な体積を占める深層水塊は、大気二酸化炭素濃度にも影響を及ぼしている可能性がある。

後氷期の初期、グリーンランドや北アメリカ氷床の融解によって低密度の淡水が大量に流入し、北大西洋での深層水の形成や沈み込みを極度に阻害したことがわかっており、これがヨーロッパで知られる気候「ヤンガードリアス」イベントを引き起こしたと考えられている。

一度メカニズムが破壊されるとその再生には数千年を要すると考えられている。

参考文献[]

  1. Wunsch, C, 2002: What is the thermohaline circulation? Science, 298, 1179-1180
  2. Wunsch, C. and R. Ferrari, 2004: Vertical Mixing, Energy, and the General Circulation of the Oceans. Annual Review of Fluid Mechanics, 36, 281-314
  3. 例えば、Toggweiler, J. R. and B. Samuels, 1998: On the Ocean's Large-Scale Circulation near the Limit of No Vertical Mixing. Journal of Physical Oceanography, 28, 1832-1852.
  4. Ganachaud, A. and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453-457.

外部リンク[]

  • http://www.ccsr.u-tokyo.ac.jp/pkaiyo2/
  • http://www.eps.s.u-tokyo.ac.jp/jp/gakubu/geoph/aos/ocean.html

関連項目[]

  • 海流
  • 海洋深層水
  • 地球科学に関する記事の一覧

ar:دورة حرارية ملحيةca:Circulació termohalinacs:Termohalinní výměníkda:Den termohaline cirkulationfa:گردش دماشوریfi:Termohaliinikiertogl:Circulación termohalinahr:Termohalinska pokretna trakait:Circolazione termoalinalt:Termohalinė cirkuliacijanl:Thermohaliene circulatiepl:Cyrkulacja termohalinowapt:Circulação termoalinasv:Termohalin cirkulation



特に記載のない限り、コミュニティのコンテンツはCC BY-SAライセンスの下で利用可能です。

シェアボタン: このページをSNSに投稿するのに便利です。


最近更新されたページ

左メニュー

左メニューサンプル左メニューはヘッダーメニューの【編集】>【左メニューを編集する】をクリックすると編集できます。ご自由に編集してください。掲示板雑談・質問・相談掲示板更新履歴最近のコメントカウン...

龍神温泉

♨龍神温泉ファイル:Ryujin Spa1.jpg.JPG日高川沿いに並ぶ旅館温泉情報所在地和歌山県田辺市龍神村交通アクセスバス - 龍神バス:バス停「龍神温泉」・「季楽里龍神」車 - 高野龍神スカイ...

鼓川温泉

♨鼓川温泉温泉情報所在地山梨県山梨市牧丘町交通アクセス車:中央自動車道 勝沼ICより、国道140号を経由して乙女高原方面へ鉄道:中央本線塩山駅より牧丘町塩平方面行きバス、鼓川温泉下車泉質単純温泉泉温3...

黒薙温泉

♨黒薙温泉ファイル:Kuronagi-onsen01.JPG混浴露天風呂(2007年)温泉情報所在地富山県黒部市宇奈月温泉交通アクセスアクセスの項を参照泉質単純温泉泉温97.2 セルシウス度|テンプレ...

黒羽温泉

♨黒羽温泉温泉情報所在地栃木県大田原市黒羽交通アクセス鉄道 : 宇都宮線西那須野駅よりタクシー・車で約35分車 : 東北自動車道西那須野塩原インターチェンジより40分、那須インターチェンジより約30分...

黒石温泉郷

黒石温泉郷(くろいしおんせんきょう)は、青森県黒石市(旧国陸奥国)の奥座敷に位置する温泉の総称(温泉郷)である。浅瀬石川沿いに長寿温泉、温湯温泉、落合温泉、板留温泉の4つが存在。前述の4温泉から山間部...

黒湯

曖昧さ回避この項目では、黒色の温泉について記述しています。秋田県仙北市にある温泉については「黒湯温泉」をご覧ください。黒湯(くろゆ)とは、主に湯船における湯の色が黒色、黒褐色をした源泉のことを指す。東...

黒沢温泉

♨黒沢温泉温泉情報所在地山形県山形市交通アクセス鉄道:奥羽本線(山形線) 蔵王駅より徒歩約10分泉質硫酸塩泉宿泊施設数7 表・話・編・歴 黒沢温泉(くろさわおんせん、Kurosawa Hot Spri...

黒松内温泉

♨黒松内温泉温泉情報所在地北海道寿都郡黒松内町交通アクセスJR北海道函館本線黒松内駅より車で約5分泉質塩化物泉泉温39.9 セルシウス度|テンプレート:℃湧出量400リットル(毎分)宿泊施設数1 表・...

黒川温泉_(兵庫県)

♨黒川温泉ファイル:黒川温泉1.JPG温泉情報所在地兵庫県朝来市生野町黒川交通アクセス車 : 播但連絡道路生野ランプより車で約30分鉄道 : 播但線生野駅から神姫グリーンバス生野駅裏より「黒川」行き終...

黒島_(鹿児島県)

日本 > 鹿児島県 > 鹿児島郡 > 三島村 > 黒島黒島 (鹿児島県)ファイル:Kuroshima of Kagoshima.jpg東方上空より撮影座標北緯30度50分5.6秒東経129度57分20...

黒岳_(大分県)

黒岳標高1,587m所在地大分県由布市位置北緯33度06分20秒東経131度17分34秒山系九重山系ウィキプロジェクト 山ウィキプロジェクト 山黒岳(くろだけ)は、大分県由布市庄内町及び竹田市久住町に...

黒姫山_(長野県)

曖昧さ回避この項目では、長野県信濃町の黒姫山について記述しています。新潟県糸魚川市の黒姫山については「黒姫山 (糸魚川市)」を、その他の黒姫山については「黒姫山」をご覧ください。黒姫山ファイル:Mt-...

黄金崎不老不死温泉

♨黄金崎不老不死温泉ファイル:Furofushi-spa.jpg混浴露天風呂温泉情報所在地青森県西津軽郡深浦町大字舮作字下清滝15交通アクセス鉄道:五能線艫作駅より徒歩約15分。リゾートしらかみ利用の...

黄砂

この記事は秀逸な記事に選ばれました。詳細はリンク先を参照してください。曖昧さ回避オユンナの楽曲およびアルバムについては「オユンナII黄砂」をご覧ください。ファイル:Asian Dust in Aizu...

鹿部温泉

♨鹿部温泉ファイル:Sikabe kanketusen 2005.jpgしかべ間歇泉公園内の間欠泉温泉情報所在地北海道茅部郡鹿部町交通アクセス鹿部駅よりバスで20分。函館市内より車で約1時間。泉質食塩...

鹿塩温泉

♨鹿塩温泉温泉情報所在地長野県下伊那郡大鹿村交通アクセス鉄道 : 飯田線伊那大島駅より伊那バス大鹿線で約50分で最寄バス停鹿塩へ。バス停より徒歩約15分泉質塩化物泉泉温14 セルシウス度|テンプレート...

鷹巣温泉

♨鷹巣温泉温泉情報所在地福井県福井市蓑町22字17番1交通アクセス鉄道 : 福井駅から路線バスで50分車:北陸自動車道福井北ICより45分泉質アルカリ性単純温泉アルカリ性低張性高温泉泉温49 セルシウ...

鷹の子温泉

♨鷹の子温泉温泉情報所在地愛媛県松山市交通アクセス伊予鉄道横河原線久米駅下車徒歩7分泉質単純硫黄温泉泉温38.4 セルシウス度|テンプレート:℃湧出量毎分800リットルpH9.3液性の分類アルカリ性 ...