温度

ページ名:温度
物理学
ウィキポータル 物理学
執筆依頼・加筆依頼
物理学
カテゴリ
物理学 - (画像)
ウィキプロジェクト 物理学

温度(おんど)とは、寒暖の度合いを数量で表したもの。具体的には物質を構成する分子運動のエネルギーの統計値。このため温度には下限が存在し、分子運動が止まっている状態が温度0K(絶対零度)である。ただし、分子運動が0となるのは古典的な極限としてであり、実際は、量子力学における不確定性原理から、絶対零度であっても、分子運動は0にならない(止まっていない)。

温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物はごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す。

目次

定義[]

歴史上様々な温度の定義があったが、現在の温度の定義は、平衡状態における分子の運動エネルギーを、エントロピーという統計値で微分したものである。しかし、真の意味での平衡状態は自然界では少ない。必要に迫られて非平衡状態、計測上の便宜的な定義もなされている。現時点で、非平衡状態での温度の定義は、本来の意味で定義できないこともあり、途上段階である。

また温度は、非常に計りにくい物理量の一つである。これは、温度とは統計値であるため、分子数が少ない場合(低密度状態、または非常に狭い範囲を対象にする場合)には、統計的に値が安定せず、意味が無くなるという問題である。もう一つは、非常に大量の数の分子の運動状態を一個一個観測することは現在の技術では不可能であり、代わりに間接計測を行っていることに起因している。計測の方法として、計測対象となる物体から放射される電磁波を計測する方法や、長い時間をかけて計測プローブを計測対象となる物体に接触させ熱平衡状態にさせてから計る方法がある。どちらの方法も、何らかの計測上の問題を抱えている。

しかし、近年の高速温度測定装置等を使用すれば対象物大きさ数十ミクロン、測定完了時間がミリ秒程度まで可能となっている為に、物理現象を捕らえる一つの手段としての有効性が向上してきている。

温度の物理学史[]

物体の寒暖の度合いを定量的に表そうという試みを初めて行ったのはガリレオ・ガリレイと考えられている(異説もある)。ガリレイは空気の熱膨張の性質を利用して物体の温度を計測できる装置を作成した。すなわち温度計である。ガリレイの作った温度計は気圧などの影響を受けてしまうために実際に温度を定量的に表すには及ばなかったが、このように物質の温度による性質の変化を利用して、寒暖の度合いを定量的に表そうという試みは以後も続けられた。初めて目盛付き温度計により数値によって温度を表現しようとしたのはオーレ・レーマーである。レーマーは水の沸点を60度、水の融点を7.5度とする温度目盛を作成した。温度目盛を作成するにはこのように任意の2点の定義定点が必要となる。多くの独自の温度目盛りが作成されたが、日常的にはアンデルス・セルシウスによって作成された摂氏温度目盛、ガブリエル・ファーレンハイトによって作成された華氏温度目盛が主に使用されている。

かつては温度と熱というのはほとんど同じ概念を示していた。温度と熱の違いにはじめて気が付いたのはジョゼフ・ブラックと考えられている。彼は氷が融解している最中は熱を吸収しても温度が変化しないこと(潜熱)を発見した。また温度の違う同質量の水銀と水を混ぜる実験を行い、それぞれ水と水銀の温度変化にある定数を掛けた値が常に等しくなることを発見した。すなわち熱容量の概念を発見した。熱の移動量=熱容量×温度変化となる。これらの実験により温度と熱が別物であることが確立した。

その後、19世紀に入ると効率の良い熱機関の開発の要請から熱力学の構築が進んでいった。ニコラ・レオナール・サディ・カルノーは熱機関の効率には熱源と冷媒の間の温度差によって決まる上限があることを発見した。このことから熱力学第二法則についての研究が進んでいった。熱力学第二法則によれば外部から仕事がなされない限り、熱エネルギーは温度の高い物体から温度の低い物体にしか移動しない。すなわち温度とは熱エネルギーが自然に移動していく方向を示す指標であるといえる。

ウィリアム・トムソンはカルノーサイクルで熱源と冷媒に出入りする熱エネルギーから温度目盛が構築できることを示した。これを熱力学温度目盛という。熱力学温度においては1つの定義定点はカルノーサイクルの効率が1となる温度であり、これは摂氏温度目盛で表せば-273.15℃である。熱力学第二法則によれば、この温度に到達するには無限の仕事が必要となり、それより低い温度は存在しない。そのため、この温度を絶対零度ともいう。熱力学温度目盛ではこの絶対零度を原点(0 K)としている。温度の下限の存在はトムソン以前にシャルルの法則から、あらゆる気体の体積が0となる温度として考えられていた。

原子、分子レベルにおける温度の意味については、ジェームズ・クラーク・マクスウェルの気体分子運動論によって初めて明らかとなった。気体分子の速度の分布はマクスウェル分布に従い、この分布関数の形状は温度に依存している。特に気体分子の平均運動エネルギーは3/2 kT(k:ボルツマン定数、T:熱力学温度)となり、温度に比例する。すなわち温度は分子運動の激しさを表す数値でもある。このためプラズマ中のイオンや電子の持つ平均運動エネルギーを温度で表現することがある。この時は通常平均運動エネルギー = kTとなる温度Tによって表現する。

ルートヴィッヒ・ボルツマンはこのマクスウェルの考え方を発展させ統計熱力学を構築した。統計熱力学では、あらゆる形態のエネルギーにこの考え方が拡張されている。温度が高いほど高いエネルギーを持つ原子や分子の割合が大きくなり、原子や分子の持つ平均エネルギーの大きさも増加する。このように統計熱力学において温度は分子のエネルギー分布の仕方を表す指標である。

量子論が確立してくると、古典的な統計熱力学は量子統計の近似であることが明らかとなった。古典論においては0 Kにおいてあらゆる粒子は運動を停止した最低エネルギー状態をとることになるが、量子論においては粒子は0 Kにおいても零点エネルギーを持ち静止状態とはならない。また、ボース粒子のエネルギー分布はボース・アインシュタイン分布、フェルミ粒子のエネルギー分布はフェルミ・ディラック分布となる。フェルミ粒子においてはパウリの排他原理により、絶対零度においても古典論では数万 Kにも相当するような大きなエネルギーを持つ粒子が存在し、温度を古典論のように単純に粒子のエネルギーの大きさの目安とすることはできない。しかし、温度が分子のエネルギー分布の仕方を表す指標であることは古典統計と変わっていない。

温度の単位と種類[]

  • 温度単位
    • 熱力学温度(絶対温度、開氏) - ケルビン
    • セルシウス度(摂氏)
    • ファーレンハイト度(華氏)
    • レオミュール度(列氏)
    • ランキン度(蘭氏)
  • 乾球温度
  • 湿球温度
  • 放射温度
  • グローブ温度
  • 露点温度

国際温度目盛[]

国際単位系においては温度には熱力学温度を使用し、単位としてケルビンを使用することになっている。しかし熱力学温度は理想化された系の性質から定義される温度であるから、実際に計測することは容易ではない。そこで熱力学温度と実用上一致し、測定しやすい温度として国際温度目盛(こくさいおんどめもり、ITS、International Temperature Scale)が定められている。現在使用されている温度目盛は1990年に定められたものでITS-90と呼ばれている。国際温度目盛はある領域の温度を測定する計測方法とそれを校正するための定義定点からなる。

計測方法[]

  • 0.65 K - 5.0 K : ヘリウムの蒸気圧と温度の関係式によって定義される。
  • 3.0 K - 24.5561 K : ヘリウム3またはヘリウム4の定積気体温度計によって計測される。
  • 13.8033 K - 1234.93 K : 白金抵抗体の273.16 Kでの抵抗値との抵抗比によって計測される。
  • 1234.93 K : 放射温度計のある波長での放射密度によって計測される。

定義定点[]

  • ヘリウムの蒸気圧点:3 K - 5 Kでの値を校正に使用
  • 平衡水素の三重点:13.8033 K
  • 平衡水素の蒸気圧点:17.035 Kと20.27 K付近の値が定義されている
  • ヘリウム気体温度計の示度:17.0 Kと20.3 K付近の値を校正に使用
  • ネオンの三重点:24.5561 K
  • 酸素の三重点:54.3584 K
  • アルゴンの三重点:83.8058 K
  • 水銀の三重点:234.3156 K
  • 水の三重点:273.16 K (熱力学温度目盛のもう一つの定義定点)
  • ガリウムの標準気圧下(101325 Pa)の融解点:302.9146 K
  • インジウムの標準気圧下の凝固点:429.7485 K
  • スズの標準気圧下の凝固点:505.078 K
  • 亜鉛の標準気圧下の凝固点:692.677 K
  • アルミニウムの標準気圧下の凝固点:933.473 K
  • 銀の標準気圧下の凝固点:1234.93 K
  • 金の標準気圧下の凝固点:1337.33 K
  • 銅の標準気圧下の凝固点:1357.77 K

温度測定法[]

測定方法には物体に直接触れて測る接触式と、触らずに測る非接触式がある。

接触式は、膨張式と電気式、計数式等があり、膨張式は、気圧温度計や蒸気圧温度計など温度変化による気体の圧力変化を測るものや、水銀温度計のような液体の長さを測るもの、固体の変形を測るバイメタル式がある。電気式は、温度によって抵抗率が変わる原理を利用した白金抵抗温度計や熱電対など金属線を用いるもの、サーミスタやダイオードなど半導体を用いるものがある。温度変化を共振周波数変化として計測できる水晶温度計は計数式に分類され、この他にもサーモペイントや液晶も接触して温度変化を測定できる。

非接触式は、検出波長によって2種類に分かれる。ひとつは、約2µm~5µmの短波長の赤外線を検出波長帯とする量子型。もうひとつは、約8~14µmの長波長の赤外線を検出波長帯とする熱型。それぞれの検出波長帯は、大気による赤外線の減衰が小さい波長帯にあたり、量子型は検出素子にInSb(インジウムアンチモン)、InAs(インジウムヒ素)などを使い、熱型はマイクロボロメータを使っている。非接触式の温度計としては代表的なものとして、赤外線サーモグラフィがある。

  • 熱電対
  • 測温抵抗体
  • サーミスタ
  • 放射温度計
  • 液柱温度計
  • バイメタル式温度計
  • 赤外線サーモグラフィ

温度の影響[]

温度は化学反応の速度に大きな影響を持ち、大まかには10℃温度が上昇すると反応速度は倍増するとも言う。

したがって、それを元にするあらゆる現象、分野で言えば化学と生物学の現象に関して、温度は強い影響を持つ。この分野の観察や実験においては、もっとも基礎的なデータの一つとしてそれを記録する必要があり、あるいは温度を調整することが実験を成立させる重要な条件となる。

また、生物や医学関連で組織や検体をとりあえず冷蔵するのもこれに基づき、温度を下げることでその内部での化学変化の速度を抑える意味がある。

体感としての温度[]

我々には温度を感覚として受け取る能力がある。一般には気温の上下を寒暖という。気温が常温より高い場合には暖かい、さらに高い場合には暑いという。常温より低い場合、寒いが使われる。また、接触した対象の温度に関しては高温を熱い、低温を冷たいと表現する。また、ヒトが感じる温度感覚は、必ずしも温度そのものだけでは決まらず、や湿度にも影響を受ける。これらを勘案したものを体感温度という。

温度差[]

  • 「温度差」(おんどさ):温度差とは文字通り二つの物質における温度の違いのその量の差であるが、1990年代初め頃から日本では一つの物事や案件に対して複数の関係者間での熱意、考え方や思惑などの違い、価値観の違いなどを比喩的に「温度差」と表現されることがある。[1] これはそれぞれの関係者の考え方や思惑などを、熱い思いと冷めた思いと捉え、その違いを物理的な温度の違いとして例えた言葉である。

関連項目[]

ウィクショナリーに温度の項目があります。
  • 数量の比較
  • 温度の比較
  • 常温
  • 気温

脚注[]

  1. 温度差、三省堂デイリー 新語辞典

外部リンク[]

af:Temperatuurar:درجة حرارةast:Temperaturaaz:Temperaturbe:Тэмператураbe-x-old:Тэмпэратураbg:Температураbr:Gwrezverkbs:Temperaturaca:Temperaturaceb:Temperaturacs:Teplotada:Temperaturel:Θερμοκρασίαeo:Temperaturoet:Temperatuureu:Tenperaturafa:دماfi:Lämpötilagl:Temperaturahe:טמפרטורהhi:तापमानhr:Temperaturahu:Hőmérsékletid:Suhuio:Temperaturois:Hitiit:Temperaturala:Temperatura thermodynamicalb:Temperaturlt:Temperatūralv:Temperatūramk:Температураms:Suhunds-nl:Temperetuurnl:Temperatuurnn:Temperaturno:Temperaturoc:Temperaturapl:Temperaturapms:Temperadurapt:Temperaturaqu:Q'uñi kayro:Temperaturăscn:Timpiratura (statu tèrmicu)sh:Temperaturasimple:Temperaturesk:Teplotasl:Temperaturasr:Температураsu:Suhusv:Temperaturta:வெப்பநிலைte:ఉష్ణోగ్రతth:อุณหภูมิtr:Sıcaklıkuk:Температураur:درجہ حرارتuz:Haroratvi:Nhiệt độwuu:温度yi:טעמפעראטור



特に記載のない限り、コミュニティのコンテンツはCC BY-SAライセンスの下で利用可能です。

シェアボタン: このページをSNSに投稿するのに便利です。


最近更新されたページ

左メニュー

左メニューサンプル左メニューはヘッダーメニューの【編集】>【左メニューを編集する】をクリックすると編集できます。ご自由に編集してください。掲示板雑談・質問・相談掲示板更新履歴最近のコメントカウン...

龍神温泉

♨龍神温泉ファイル:Ryujin Spa1.jpg.JPG日高川沿いに並ぶ旅館温泉情報所在地和歌山県田辺市龍神村交通アクセスバス - 龍神バス:バス停「龍神温泉」・「季楽里龍神」車 - 高野龍神スカイ...

鼓川温泉

♨鼓川温泉温泉情報所在地山梨県山梨市牧丘町交通アクセス車:中央自動車道 勝沼ICより、国道140号を経由して乙女高原方面へ鉄道:中央本線塩山駅より牧丘町塩平方面行きバス、鼓川温泉下車泉質単純温泉泉温3...

黒薙温泉

♨黒薙温泉ファイル:Kuronagi-onsen01.JPG混浴露天風呂(2007年)温泉情報所在地富山県黒部市宇奈月温泉交通アクセスアクセスの項を参照泉質単純温泉泉温97.2 セルシウス度|テンプレ...

黒羽温泉

♨黒羽温泉温泉情報所在地栃木県大田原市黒羽交通アクセス鉄道 : 宇都宮線西那須野駅よりタクシー・車で約35分車 : 東北自動車道西那須野塩原インターチェンジより40分、那須インターチェンジより約30分...

黒石温泉郷

黒石温泉郷(くろいしおんせんきょう)は、青森県黒石市(旧国陸奥国)の奥座敷に位置する温泉の総称(温泉郷)である。浅瀬石川沿いに長寿温泉、温湯温泉、落合温泉、板留温泉の4つが存在。前述の4温泉から山間部...

黒湯

曖昧さ回避この項目では、黒色の温泉について記述しています。秋田県仙北市にある温泉については「黒湯温泉」をご覧ください。黒湯(くろゆ)とは、主に湯船における湯の色が黒色、黒褐色をした源泉のことを指す。東...

黒沢温泉

♨黒沢温泉温泉情報所在地山形県山形市交通アクセス鉄道:奥羽本線(山形線) 蔵王駅より徒歩約10分泉質硫酸塩泉宿泊施設数7 表・話・編・歴 黒沢温泉(くろさわおんせん、Kurosawa Hot Spri...

黒松内温泉

♨黒松内温泉温泉情報所在地北海道寿都郡黒松内町交通アクセスJR北海道函館本線黒松内駅より車で約5分泉質塩化物泉泉温39.9 セルシウス度|テンプレート:℃湧出量400リットル(毎分)宿泊施設数1 表・...

黒川温泉_(兵庫県)

♨黒川温泉ファイル:黒川温泉1.JPG温泉情報所在地兵庫県朝来市生野町黒川交通アクセス車 : 播但連絡道路生野ランプより車で約30分鉄道 : 播但線生野駅から神姫グリーンバス生野駅裏より「黒川」行き終...

黒島_(鹿児島県)

日本 > 鹿児島県 > 鹿児島郡 > 三島村 > 黒島黒島 (鹿児島県)ファイル:Kuroshima of Kagoshima.jpg東方上空より撮影座標北緯30度50分5.6秒東経129度57分20...

黒岳_(大分県)

黒岳標高1,587m所在地大分県由布市位置北緯33度06分20秒東経131度17分34秒山系九重山系ウィキプロジェクト 山ウィキプロジェクト 山黒岳(くろだけ)は、大分県由布市庄内町及び竹田市久住町に...

黒姫山_(長野県)

曖昧さ回避この項目では、長野県信濃町の黒姫山について記述しています。新潟県糸魚川市の黒姫山については「黒姫山 (糸魚川市)」を、その他の黒姫山については「黒姫山」をご覧ください。黒姫山ファイル:Mt-...

黄金崎不老不死温泉

♨黄金崎不老不死温泉ファイル:Furofushi-spa.jpg混浴露天風呂温泉情報所在地青森県西津軽郡深浦町大字舮作字下清滝15交通アクセス鉄道:五能線艫作駅より徒歩約15分。リゾートしらかみ利用の...

黄砂

この記事は秀逸な記事に選ばれました。詳細はリンク先を参照してください。曖昧さ回避オユンナの楽曲およびアルバムについては「オユンナII黄砂」をご覧ください。ファイル:Asian Dust in Aizu...

鹿部温泉

♨鹿部温泉ファイル:Sikabe kanketusen 2005.jpgしかべ間歇泉公園内の間欠泉温泉情報所在地北海道茅部郡鹿部町交通アクセス鹿部駅よりバスで20分。函館市内より車で約1時間。泉質食塩...

鹿塩温泉

♨鹿塩温泉温泉情報所在地長野県下伊那郡大鹿村交通アクセス鉄道 : 飯田線伊那大島駅より伊那バス大鹿線で約50分で最寄バス停鹿塩へ。バス停より徒歩約15分泉質塩化物泉泉温14 セルシウス度|テンプレート...

鷹巣温泉

♨鷹巣温泉温泉情報所在地福井県福井市蓑町22字17番1交通アクセス鉄道 : 福井駅から路線バスで50分車:北陸自動車道福井北ICより45分泉質アルカリ性単純温泉アルカリ性低張性高温泉泉温49 セルシウ...

鷹の子温泉

♨鷹の子温泉温泉情報所在地愛媛県松山市交通アクセス伊予鉄道横河原線久米駅下車徒歩7分泉質単純硫黄温泉泉温38.4 セルシウス度|テンプレート:℃湧出量毎分800リットルpH9.3液性の分類アルカリ性 ...