左メニュー
左メニューサンプル左メニューはヘッダーメニューの【編集】>【左メニューを編集する】をクリックすると編集できます。ご自由に編集してください。掲示板雑談・質問・相談掲示板更新履歴最近のコメントカウン...
公転周期(こうてんしゅうき、orbital period)とはある天体(母天体)の周囲を公転する天体が母天体を1公転するのに要する時間のこと。日本語では軌道周期とも呼ばれる。
太陽の周囲を公転する天体や月の場合、目的によって以下のように定義の異なるいくつかの周期が用いられる。
恒星周期 (sidereal period)恒星を基準として天体が母天体を1周する時間。その天体の真の公転周期と考えられ、単に公転周期と言う場合にはこの恒星周期を指すことが多い。地球の場合は恒星年、月の場合は恒星月と呼ぶ。会合周期 (synodic period)ある天体を地球から観測した時に、天球上で太陽に対して同じ位置に来る、すなわち太陽との離角が同じ値になる周期。その天体が太陽との合の位置に来る時間間隔であり、地球から見たその天体の見かけの公転周期と言える。地球自身が太陽の周囲を公転しているため、一般に会合周期と恒星周期は異なる。月の会合周期を朔望月と呼ぶ。交点周期 (draconic period)ある天体が昇交点(天体の軌道が黄道面を南から北へと交差する点)を通過する周期。月の交点周期を交点月と呼ぶ。地球の軌道面は定義により黄道面と等しいため、地球には交点周期はない。天体の軌道面は一般に歳差運動で動くため、昇交点は黄道に対してゆっくりと移動している。そのため交点周期も恒星周期とは一致しない。近点周期 (anomalistic period)ある天体が近点(母天体に最も近づく点)を通過する周期。地球の場合は近点年、月の場合は近点月と呼ぶ。天体の軌道の長軸も一般に歳差運動によってゆっくりと回転して近点が移動するため、近点周期も恒星周期とは一致しない。回帰周期 (tropical period)ある天体が赤経0時を通過する周期。地球の場合は回帰年または太陽年、月の場合は分点月と呼ぶ。春分点が歳差によって移動するため、一般に回帰周期は恒星周期よりもわずかに短い。惑星の恒星周期と会合周期の関係式はニコラウス・コペルニクスによって導かれた。
ここで以下の各記号を用いる。
E = 地球の恒星周期(恒星年)P = 惑星の恒星周期S = 惑星と地球との会合周期円軌道を仮定すると、会合周期 S の間に地球は (360/E)S 度、惑星は (360/P)S 度だけ公転する。
ここでまず内惑星について考えると、地球から見て内合の位置にいる内惑星が再び内合の位置に戻るまでに、内惑星は地球よりも1周多く公転する。
S P 360 ∘ = S E 360 ∘ + 360 ∘ {\displaystyle {\frac {S}{P}}360^{\circ }={\frac {S}{E}}360^{\circ }+360^{\circ }} {\displaystyle {\frac {S}{P}}360^{\circ }={\frac {S}{E}}360^{\circ }+360^{\circ }}よってこの式から、惑星の恒星周期 P は以下のように求められる。
P = 1 1 E + 1 S {\displaystyle P={\frac {1}{{\frac {1}{E}}+{\frac {1}{S}}}}}同様にして外惑星の恒星周期は以下のようになる。
P = 1 1 E − 1 S {\displaystyle P={\frac {1}{{\frac {1}{E}}-{\frac {1}{S}}}}} {\displaystyle P={\frac {1}{{\frac {1}{E}}-{\frac {1}{S}}}}}この式は地球と惑星の公転角速度を考えると容易に理解できる。惑星の見かけの角速度はその惑星の真の(恒星に対する)角速度から地球の角速度を引いた値となる。よって惑星の会合周期は単に1公転(360度)を見かけの角速度で割った値になる。
太陽系の主要な天体の地球に対する会合周期は以下の通りである。
恒星周期(年) | 会合周期(年) | 会合周期(日) | |
水星 | 0.241 | 0.317 | 115.9 |
金星 | 0.615 | 1.599 | 583.9 |
地球 | 1 | — | — |
月 | 0.0748 | 0.0809 | 29.5306 |
火星 | 1.881 | 2.135 | 780.0 |
ケレス | 4.600 | 1.278 | 466.7 |
木星 | 11.87 | 1.092 | 398.9 |
土星 | 29.45 | 1.035 | 378.1 |
天王星 | 84.07 | 1.012 | 369.7 |
海王星 | 164.9 | 1.006 | 367.5 |
冥王星 | 248.1 | 1.004 | 366.7 |
惑星の衛星の場合、会合周期は通常は太陽との会合の周期を意味する。すなわち、惑星上の観測者から見てその衛星が朔望の1周期を完了し、太陽と同じ離角の位置に再び戻るまでの時間を指す。よって惑星の衛星の会合周期には地球の運動は関係しない。例として、火星の衛星ダイモスの会合周期は 1.2648 日で、恒星周期 1.2624 日よりも 0.18% ほど長い。
天体力学では、中心天体の周囲を円軌道または楕円軌道を描いて公転する微小天体の公転周期 T {\displaystyle T\,} は、微小天体の質量が中心天体に比べて十分小さい場合には
T = 2 π a 3 / G M {\displaystyle T=2\pi {\sqrt {a^{3}/GM}}} {\displaystyle T=2\pi {\sqrt {a^{3}/GM}}}と表される。ここで、
である。
この式から、軌道長半径が等しい円・楕円軌道はその離心率によらず同じ公転周期を持つことが分かる。
地球(または地球と平均密度が等しい任意の球対称の天体)の周囲を公転する小天体の公転周期は、
T = 1.4 ( a / R ) 3 {\displaystyle T=1.4{\sqrt {(a/R)^{3}}}} {\displaystyle T=1.4{\sqrt {(a/R)^{3}}}}となる。同様に、中心天体の密度が水と等しい場合の公転周期は、
T = 3.3 ( a / R ) 3 {\displaystyle T=3.3{\sqrt {(a/R)^{3}}}}となる。ここで T の単位は時間で、R は中心天体の半径である。
このように、万有引力定数 G のような非常に小さな定数を用いる代わりに、水のような基準となる物質を用いることで重力の普遍的な強さを表すことができる。密度が水に等しい物質からなる球形の中心天体の表面近くを公転する小天体の公転周期は3時間18分となる。また逆に、この関係式は普遍的な時間の単位の一種として用いることもできる。
中心天体が太陽の場合、その周囲を公転する天体の公転周期は単純に
T = a 3 {\displaystyle T={\sqrt {a^{3}}}} {\displaystyle T={\sqrt {a^{3}}}}と表される。ここで T の単位は年、a の単位は天文単位である。この式はケプラーの第三法則にほかならない。
互いに質量を無視できない二天体の公転周期 P {\displaystyle P\,} は以下のように計算される。
P = 2 π a 3 G ( M 1 + M 2 ) {\displaystyle P=2\pi {\sqrt {\frac {a^{3}}{G\left(M_{1}+M_{2}\right)}}}} {\displaystyle P=2\pi {\sqrt {\frac {a^{3}}{G\left(M_{1}+M_{2}\right)}}}}ここで、
である。この式から分かるように、両天体の密度が同じならば系の大きさをスケーリングしても公転周期は変わらない。
放物線軌道や双曲線軌道の場合には軌道運動は周期的にならず、軌道全体を運動するのに要する時間は無限大となる。
ast:Periodu orbitalbg:Орбитален периодca:Període orbitalcs:Doba oběhuda:Sideriskfi:Kiertoaikahe:זמן הקפהhr:Ophodno vrijemeit:Periodo di rivoluzionelt:Sinodinis periodasmk:Орбитален периодmr:परिभ्रमण काळnl:Omlooptijd (astronomie)nn:Baneperiodeno:Omløpstidpl:Okres orbitalnypt:Período orbitalsimple:Orbital periodsk:Doba obehusl:Orbitalna periodasq:Periudha orbitalesr:Орбитални периодsv:Siderisk omloppstidta:சுற்றுக்காலம்th:คาบดาราคติtr:Yörünge süresiuk:Орбітальний періодvi:Chu kỳ quỹ đạo
シェアボタン: このページをSNSに投稿するのに便利です。
左メニューサンプル左メニューはヘッダーメニューの【編集】>【左メニューを編集する】をクリックすると編集できます。ご自由に編集してください。掲示板雑談・質問・相談掲示板更新履歴最近のコメントカウン...
♨龍神温泉ファイル:Ryujin Spa1.jpg.JPG日高川沿いに並ぶ旅館温泉情報所在地和歌山県田辺市龍神村交通アクセスバス - 龍神バス:バス停「龍神温泉」・「季楽里龍神」車 - 高野龍神スカイ...
♨鼓川温泉温泉情報所在地山梨県山梨市牧丘町交通アクセス車:中央自動車道 勝沼ICより、国道140号を経由して乙女高原方面へ鉄道:中央本線塩山駅より牧丘町塩平方面行きバス、鼓川温泉下車泉質単純温泉泉温3...
♨黒薙温泉ファイル:Kuronagi-onsen01.JPG混浴露天風呂(2007年)温泉情報所在地富山県黒部市宇奈月温泉交通アクセスアクセスの項を参照泉質単純温泉泉温97.2 セルシウス度|テンプレ...
♨黒羽温泉温泉情報所在地栃木県大田原市黒羽交通アクセス鉄道 : 宇都宮線西那須野駅よりタクシー・車で約35分車 : 東北自動車道西那須野塩原インターチェンジより40分、那須インターチェンジより約30分...
黒石温泉郷(くろいしおんせんきょう)は、青森県黒石市(旧国陸奥国)の奥座敷に位置する温泉の総称(温泉郷)である。浅瀬石川沿いに長寿温泉、温湯温泉、落合温泉、板留温泉の4つが存在。前述の4温泉から山間部...
曖昧さ回避この項目では、黒色の温泉について記述しています。秋田県仙北市にある温泉については「黒湯温泉」をご覧ください。黒湯(くろゆ)とは、主に湯船における湯の色が黒色、黒褐色をした源泉のことを指す。東...
♨黒沢温泉温泉情報所在地山形県山形市交通アクセス鉄道:奥羽本線(山形線) 蔵王駅より徒歩約10分泉質硫酸塩泉宿泊施設数7 表・話・編・歴 黒沢温泉(くろさわおんせん、Kurosawa Hot Spri...
♨黒松内温泉温泉情報所在地北海道寿都郡黒松内町交通アクセスJR北海道函館本線黒松内駅より車で約5分泉質塩化物泉泉温39.9 セルシウス度|テンプレート:℃湧出量400リットル(毎分)宿泊施設数1 表・...
♨黒川温泉ファイル:黒川温泉1.JPG温泉情報所在地兵庫県朝来市生野町黒川交通アクセス車 : 播但連絡道路生野ランプより車で約30分鉄道 : 播但線生野駅から神姫グリーンバス生野駅裏より「黒川」行き終...
日本 > 鹿児島県 > 鹿児島郡 > 三島村 > 黒島黒島 (鹿児島県)ファイル:Kuroshima of Kagoshima.jpg東方上空より撮影座標北緯30度50分5.6秒東経129度57分20...
黒岳標高1,587m所在地大分県由布市位置北緯33度06分20秒東経131度17分34秒山系九重山系ウィキプロジェクト 山ウィキプロジェクト 山黒岳(くろだけ)は、大分県由布市庄内町及び竹田市久住町に...
曖昧さ回避この項目では、長野県信濃町の黒姫山について記述しています。新潟県糸魚川市の黒姫山については「黒姫山 (糸魚川市)」を、その他の黒姫山については「黒姫山」をご覧ください。黒姫山ファイル:Mt-...
♨黄金崎不老不死温泉ファイル:Furofushi-spa.jpg混浴露天風呂温泉情報所在地青森県西津軽郡深浦町大字舮作字下清滝15交通アクセス鉄道:五能線艫作駅より徒歩約15分。リゾートしらかみ利用の...
この記事は秀逸な記事に選ばれました。詳細はリンク先を参照してください。曖昧さ回避オユンナの楽曲およびアルバムについては「オユンナII黄砂」をご覧ください。ファイル:Asian Dust in Aizu...
♨鹿部温泉ファイル:Sikabe kanketusen 2005.jpgしかべ間歇泉公園内の間欠泉温泉情報所在地北海道茅部郡鹿部町交通アクセス鹿部駅よりバスで20分。函館市内より車で約1時間。泉質食塩...
♨鹿塩温泉温泉情報所在地長野県下伊那郡大鹿村交通アクセス鉄道 : 飯田線伊那大島駅より伊那バス大鹿線で約50分で最寄バス停鹿塩へ。バス停より徒歩約15分泉質塩化物泉泉温14 セルシウス度|テンプレート...
鹿児島県北西部地震File:テンプレート:Location map Japan|250px|鹿児島県北西部地震の位置(テンプレート:Location map Japan内)ファイル:Bullseye1...
♨鷹巣温泉温泉情報所在地福井県福井市蓑町22字17番1交通アクセス鉄道 : 福井駅から路線バスで50分車:北陸自動車道福井北ICより45分泉質アルカリ性単純温泉アルカリ性低張性高温泉泉温49 セルシウ...
♨鷹の子温泉温泉情報所在地愛媛県松山市交通アクセス伊予鉄道横河原線久米駅下車徒歩7分泉質単純硫黄温泉泉温38.4 セルシウス度|テンプレート:℃湧出量毎分800リットルpH9.3液性の分類アルカリ性 ...