Module: tf
Defined in tensorflow/__init__.py.
Bring in all of the public TensorFlow interface into this module.
Modules
app module: Generic entry point script.
bitwise module: Operations for manipulating the binary representations of integers.
compat module: Functions for Python 2 vs. 3 compatibility.
contrib module: contrib module containing volatile or experimental code.
data module: tf.data.Dataset API for input pipelines.
distributions module: Core module for TensorFlow distribution objects and helpers.
errors module: Exception types for TensorFlow errors.
estimator module: Public API for tf.estimator namespace.
feature_column module: Public API for tf.feature_column namespace.
flags module: Import router for absl.flags. See https://github.com/abseil/abseil-py.
gfile module: Import router for file_io.
graph_util module: Helpers to manipulate a tensor graph in python.
image module: Image processing and decoding ops.
initializers module: Public API for tf.initializers namespace.
keras module: Implementation of the Keras API meant to be a high-level API for TensorFlow.
layers module: Public API for tf.layers namespace.
linalg module: Operations for linear algebra.
logging module: Logging and Summary Operations.
losses module: Loss operations for use in neural networks.
manip module: Operators for manipulating tensors.
math module: Basic arithmetic operators.
metrics module: Evaluation-related metrics.
nn module: Wrappers for primitive Neural Net (NN) Operations.
profiler module: Public API for tf.profiler namespace.
python_io module: Python functions for directly manipulating TFRecord-formatted files.
pywrap_tensorflow module: A wrapper for TensorFlow SWIG-generated bindings.
resource_loader module: Resource management library.
saved_model module: Public API for tf.saved_model namespace.
sets module: Tensorflow set operations.
sparse module: Sparse Tensor Representation. See the Sparse Tensors guide.
spectral module: Spectral operators (e.g. DCT, FFT, RFFT).
strings module: Operations for working with string Tensors.
summary module: Public API for tf.summary namespace.
sysconfig module: System configuration library.
test module: Testing.
tools module
train module: Support for training models.
user_ops module: Public API for tf.user_ops namespace.
Classes
class AggregationMethod: A class listing aggregation methods used to combine gradients.
class AttrValue: A ProtocolMessage
class ConditionalAccumulator: A conditional accumulator for aggregating gradients.
class ConditionalAccumulatorBase: A conditional accumulator for aggregating gradients.
class ConfigProto: A ProtocolMessage
class DType: Represents the type of the elements in a Tensor.
class DeviceSpec: Represents a (possibly partial) specification for a TensorFlow device.
class Dimension: Represents the value of one dimension in a TensorShape.
class Event: A ProtocolMessage
class FIFOQueue: A queue implementation that dequeues elements in first-in first-out order.
class FixedLenFeature: Configuration for parsing a fixed-length input feature.
class FixedLenSequenceFeature: Configuration for parsing a variable-length input feature into a Tensor.
class FixedLengthRecordReader: A Reader that outputs fixed-length records from a file.
class GPUOptions: A ProtocolMessage
class GradientTape: Record operations for automatic differentiation.
class Graph: A TensorFlow computation, represented as a dataflow graph.
class GraphDef: A ProtocolMessage
class GraphKeys: Standard names to use for graph collections.
class GraphOptions: A ProtocolMessage
class HistogramProto: A ProtocolMessage
class IdentityReader: A Reader that outputs the queued work as both the key and value.
class IndexedSlices: A sparse representation of a set of tensor slices at given indices.
class InteractiveSession: A TensorFlow Session for use in interactive contexts, such as a shell.
class LMDBReader: A Reader that outputs the records from a LMDB file.
class LogMessage: A ProtocolMessage
class MetaGraphDef: A ProtocolMessage
class NameAttrList: A ProtocolMessage
class NodeDef: A ProtocolMessage
class OpError: A generic error that is raised when TensorFlow execution fails.
class Operation: Represents a graph node that performs computation on tensors.
class OptimizerOptions: A ProtocolMessage
class PaddingFIFOQueue: A FIFOQueue that supports batching variable-sized tensors by padding.
class PriorityQueue: A queue implementation that dequeues elements in prioritized order.
class QueueBase: Base class for queue implementations.
class RandomShuffleQueue: A queue implementation that dequeues elements in a random order.
class ReaderBase: Base class for different Reader types, that produce a record every step.
class RegisterGradient: A decorator for registering the gradient function for an op type.
class RunMetadata: A ProtocolMessage
class RunOptions: A ProtocolMessage
class Session: A class for running TensorFlow operations.
class SessionLog: A ProtocolMessage
class SparseConditionalAccumulator: A conditional accumulator for aggregating sparse gradients.
class SparseFeature: Configuration for parsing a sparse input feature from an Example.
class SparseTensor: Represents a sparse tensor.
class SparseTensorValue: SparseTensorValue(indices, values, dense_shape)
class Summary: A ProtocolMessage
class SummaryMetadata: A ProtocolMessage
class TFRecordReader: A Reader that outputs the records from a TFRecords file.
class Tensor: Represents one of the outputs of an Operation.
class TensorArray: Class wrapping dynamic-sized, per-time-step, write-once Tensor arrays.
class TensorInfo: A ProtocolMessage
class TensorShape: Represents the shape of a Tensor.
class TextLineReader: A Reader that outputs the lines of a file delimited by newlines.
class VarLenFeature: Configuration for parsing a variable-length input feature.
class Variable: See the Variables How To for a high level overview.
class VariableScope: Variable scope object to carry defaults to provide to get_variable.
class WholeFileReader: A Reader that outputs the entire contents of a file as a value.
class constant_initializer: Initializer that generates tensors with constant values.
class name_scope: A context manager for use when defining a Python op.
class ones_initializer: Initializer that generates tensors initialized to 1.
class orthogonal_initializer: Initializer that generates an orthogonal matrix.
class random_normal_initializer: Initializer that generates tensors with a normal distribution.
class random_uniform_initializer: Initializer that generates tensors with a uniform distribution.
class truncated_normal_initializer: Initializer that generates a truncated normal distribution.
class uniform_unit_scaling_initializer: Initializer that generates tensors without scaling variance.
class variable_scope: A context manager for defining ops that creates variables (layers).
class variance_scaling_initializer: Initializer capable of adapting its scale to the shape of weights tensors.
class zeros_initializer: Initializer that generates tensors initialized to 0.
Functions
Assert(...): Asserts that the given condition is true.
NoGradient(...): Specifies that ops of type op_type is not differentiable.
NotDifferentiable(...): Specifies that ops of type op_type is not differentiable.
Print(...): Prints a list of tensors.
abs(...): Computes the absolute value of a tensor.
accumulate_n(...): Returns the element-wise sum of a list of tensors.
acos(...): Computes acos of x element-wise.
acosh(...): Computes inverse hyperbolic cosine of x element-wise.
add(...): Returns x + y element-wise.
add_check_numerics_ops(...): Connect a check_numerics to every floating point tensor.
add_n(...): Adds all input tensors element-wise.
add_to_collection(...): Wrapper for Graph.add_to_collection() using the default graph.
add_to_collections(...): Wrapper for Graph.add_to_collections() using the default graph.
all_variables(...): See tf.global_variables. (deprecated)
angle(...): Returns the element-wise argument of a complex (or real) tensor.
arg_max(...): Returns the index with the largest value across dimensions of a tensor. (deprecated)
arg_min(...): Returns the index with the smallest value across dimensions of a tensor. (deprecated)
argmax(...): Returns the index with the largest value across axes of a tensor. (deprecated arguments)
argmin(...): Returns the index with the smallest value across axes of a tensor. (deprecated arguments)
as_dtype(...): Converts the given type_value to a DType.
as_string(...): Converts each entry in the given tensor to strings. Supports many numeric
asin(...): Computes asin of x element-wise.
asinh(...): Computes inverse hyperbolic sine of x element-wise.
assert_equal(...): Assert the condition x == y holds element-wise.
assert_greater(...): Assert the condition x > y holds element-wise.
assert_greater_equal(...): Assert the condition x >= y holds element-wise.
assert_integer(...): Assert that x is of integer dtype.
assert_less(...): Assert the condition x < y holds element-wise.
assert_less_equal(...): Assert the condition x <= y holds element-wise.
assert_near(...): Assert the condition x and y are close element-wise.
assert_negative(...): Assert the condition x < 0 holds element-wise.
assert_non_negative(...): Assert the condition x >= 0 holds element-wise.
assert_non_positive(...): Assert the condition x <= 0 holds element-wise.
assert_none_equal(...): Assert the condition x != y holds for all elements.
assert_positive(...): Assert the condition x > 0 holds element-wise.
assert_proper_iterable(...): Static assert that values is a "proper" iterable.
assert_rank(...): Assert x has rank equal to rank.
assert_rank_at_least(...): Assert x has rank equal to rank or higher.
assert_rank_in(...): Assert x has rank in ranks.
assert_same_float_dtype(...): Validate and return float type based on tensors and dtype.
assert_scalar(...)
assert_type(...): Statically asserts that the given Tensor is of the specified type.
assert_variables_initialized(...): Returns an Op to check if variables are initialized.
assign(...): Update 'ref' by assigning 'value' to it.
assign_add(...): Update 'ref' by adding 'value' to it.
assign_sub(...): Update 'ref' by subtracting 'value' from it.
atan(...): Computes atan of x element-wise.
atan2(...): Computes arctangent of y/x element-wise, respecting signs of the arguments.
atanh(...): Computes inverse hyperbolic tangent of x element-wise.
batch_to_space(...): BatchToSpace for 4-D tensors of type T.
batch_to_space_nd(...): BatchToSpace for N-D tensors of type T.
betainc(...): Compute the regularized incomplete beta integral .
bincount(...): Counts the number of occurrences of each value in an integer array.
bitcast(...): Bitcasts a tensor from one type to another without copying data.
boolean_mask(...): Apply boolean mask to tensor. Numpy equivalent is tensor[mask].
broadcast_dynamic_shape(...): Returns the broadcasted dynamic shape between shape_x and shape_y.
broadcast_static_shape(...): Returns the broadcasted static shape between shape_x and shape_y.
case(...): Create a case operation.
cast(...): Casts a tensor to a new type.
ceil(...): Returns element-wise smallest integer in not less than x.
check_numerics(...): Checks a tensor for NaN and Inf values.
cholesky(...): Computes the Cholesky decomposition of one or more square matrices.
cholesky_solve(...): Solves systems of linear eqns A X = RHS, given Cholesky factorizations.
clip_by_average_norm(...): Clips tensor values to a maximum average L2-norm.
clip_by_global_norm(...): Clips values of multiple tensors by the ratio of the sum of their norms.
clip_by_norm(...): Clips tensor values to a maximum L2-norm.
clip_by_value(...): Clips tensor values to a specified min and max.
colocate_with(...)
complex(...): Converts two real numbers to a complex number.
concat(...): Concatenates tensors along one dimension.
cond(...): Return true_fn() if the predicate pred is true else false_fn(). (deprecated arguments)
confusion_matrix(...): Computes the confusion matrix from predictions and labels.
conj(...): Returns the complex conjugate of a complex number.
constant(...): Creates a constant tensor.
container(...): Wrapper for Graph.container() using the default graph.
control_dependencies(...): Wrapper for Graph.control_dependencies() using the default graph.
convert_to_tensor(...): Converts the given value to a Tensor.
convert_to_tensor_or_indexed_slices(...): Converts the given object to a Tensor or an IndexedSlices.
convert_to_tensor_or_sparse_tensor(...): Converts value to a SparseTensor or Tensor.
cos(...): Computes cos of x element-wise.
cosh(...): Computes hyperbolic cosine of x element-wise.
count_nonzero(...): Computes number of nonzero elements across dimensions of a tensor. (deprecated arguments)
count_up_to(...): Increments 'ref' until it reaches 'limit'.
create_partitioned_variables(...): Create a list of partitioned variables according to the given slicing.
cross(...): Compute the pairwise cross product.
cumprod(...): Compute the cumulative product of the tensor x along axis.
cumsum(...): Compute the cumulative sum of the tensor x along axis.
custom_gradient(...): Decorator to define a function with a custom gradient.
decode_base64(...): Decode web-safe base64-encoded strings.
decode_compressed(...): Decompress strings.
decode_csv(...): Convert CSV records to tensors. Each column maps to one tensor.
decode_json_example(...): Convert JSON-encoded Example records to binary protocol buffer strings.
decode_raw(...): Reinterpret the bytes of a string as a vector of numbers.
delete_session_tensor(...): Delete the tensor for the given tensor handle.
depth_to_space(...): DepthToSpace for tensors of type T.
dequantize(...): Dequantize the 'input' tensor into a float Tensor.
deserialize_many_sparse(...): Deserialize and concatenate SparseTensors from a serialized minibatch.
device(...): Wrapper for Graph.device() using the default graph.
diag(...): Returns a diagonal tensor with a given diagonal values.
diag_part(...): Returns the diagonal part of the tensor.
digamma(...): Computes Psi, the derivative of Lgamma (the log of the absolute value of
div(...): Divides x / y elementwise (using Python 2 division operator semantics).
divide(...): Computes Python style division of x by y.
dynamic_partition(...): Partitions data into num_partitions tensors using indices from partitions.
dynamic_stitch(...): Interleave the values from the data tensors into a single tensor.
edit_distance(...): Computes the Levenshtein distance between sequences.
einsum(...): A generalized contraction between tensors of arbitrary dimension.
enable_eager_execution(...): Enables eager execution for the lifetime of this program.
encode_base64(...): Encode strings into web-safe base64 format.
equal(...): Returns the truth value of (x == y) element-wise.
erf(...): Computes the Gauss error function of x element-wise.
erfc(...): Computes the complementary error function of x element-wise.
executing_eagerly(...): Returns True if the current thread has eager execution enabled.
exp(...): Computes exponential of x element-wise. .
expand_dims(...): Inserts a dimension of 1 into a tensor's shape. (deprecated arguments)
expm1(...): Computes exponential of x - 1 element-wise.
extract_image_patches(...): Extract patches from images and put them in the "depth" output dimension.
eye(...): Construct an identity matrix, or a batch of matrices.
fake_quant_with_min_max_args(...): Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same type.
fake_quant_with_min_max_args_gradient(...): Compute gradients for a FakeQuantWithMinMaxArgs operation.
fake_quant_with_min_max_vars(...): Fake-quantize the 'inputs' tensor of type float via global float scalars min
fake_quant_with_min_max_vars_gradient(...): Compute gradients for a FakeQuantWithMinMaxVars operation.
fake_quant_with_min_max_vars_per_channel(...): Fake-quantize the 'inputs' tensor of type float and one of the shapes: [d],
fake_quant_with_min_max_vars_per_channel_gradient(...): Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation.
fft(...): Fast Fourier transform.
fft2d(...): 2D fast Fourier transform.
fft3d(...): 3D fast Fourier transform.
fill(...): Creates a tensor filled with a scalar value.
fixed_size_partitioner(...): Partitioner to specify a fixed number of shards along given axis.
floor(...): Returns element-wise largest integer not greater than x.
floor_div(...): Returns x // y element-wise.
floordiv(...): Divides x / y elementwise, rounding toward the most negative integer.
floormod(...): Returns element-wise remainder of division. When x < 0 xor y < 0 is
foldl(...): foldl on the list of tensors unpacked from elems on dimension 0.
foldr(...): foldr on the list of tensors unpacked from elems on dimension 0.
gather(...): Gather slices from params axis axis according to indices.
gather_nd(...): Gather slices from params into a Tensor with shape specified by indices.
get_collection(...): Wrapper for Graph.get_collection() using the default graph.
get_collection_ref(...): Wrapper for Graph.get_collection_ref() using the default graph.
get_default_graph(...): Returns the default graph for the current thread.
get_default_session(...): Returns the default session for the current thread.
get_local_variable(...): Gets an existing local variable or creates a new one.
get_seed(...): Returns the local seeds an operation should use given an op-specific seed.
get_session_handle(...): Return the handle of data.
get_session_tensor(...): Get the tensor of type dtype by feeding a tensor handle.
get_variable(...): Gets an existing variable with these parameters or create a new one.
get_variable_scope(...): Returns the current variable scope.
global_norm(...): Computes the global norm of multiple tensors.
global_variables(...): Returns global variables.
global_variables_initializer(...): Returns an Op that initializes global variables.
glorot_normal_initializer(...): The Glorot normal initializer, also called Xavier normal initializer.
glorot_uniform_initializer(...): The Glorot uniform initializer, also called Xavier uniform initializer.
gradients(...): Constructs symbolic derivatives of sum of ys w.r.t. x in xs.
greater(...): Returns the truth value of (x > y) element-wise.
greater_equal(...): Returns the truth value of (x >= y) element-wise.
group(...): Create an op that groups multiple operations.
guarantee_const(...): Gives a guarantee to the TF runtime that the input tensor is a constant.
hessians(...): Constructs the Hessian of sum of ys with respect to x in xs.
histogram_fixed_width(...): Return histogram of values.
histogram_fixed_width_bins(...): Bins the given values for use in a histogram.
identity(...): Return a tensor with the same shape and contents as input.
identity_n(...): Returns a list of tensors with the same shapes and contents as the input
ifft(...): Inverse fast Fourier transform.
ifft2d(...): Inverse 2D fast Fourier transform.
ifft3d(...): Inverse 3D fast Fourier transform.
igamma(...): Compute the lower regularized incomplete Gamma function Q(a, x).
igammac(...): Compute the upper regularized incomplete Gamma function Q(a, x).
imag(...): Returns the imaginary part of a complex (or real) tensor.
import_graph_def(...): Imports the graph from graph_def into the current default Graph. (deprecated arguments)
initialize_all_tables(...): Returns an Op that initializes all tables of the default graph. (deprecated)
initialize_all_variables(...): See tf.global_variables_initializer. (deprecated)
initialize_local_variables(...): See tf.local_variables_initializer. (deprecated)
initialize_variables(...): See tf.variables_initializer. (deprecated)
invert_permutation(...): Computes the inverse permutation of a tensor.
is_finite(...): Returns which elements of x are finite.
is_inf(...): Returns which elements of x are Inf.
is_nan(...): Returns which elements of x are NaN.
is_non_decreasing(...): Returns True if x is non-decreasing.
is_numeric_tensor(...)
is_strictly_increasing(...): Returns True if x is strictly increasing.
is_variable_initialized(...): Tests if a variable has been initialized.
lbeta(...): Computes , reducing along the last dimension.
less(...): Returns the truth value of (x < y) element-wise.
less_equal(...): Returns the truth value of (x <= y) element-wise.
lgamma(...): Computes the log of the absolute value of Gamma(x) element-wise.
lin_space(...): Generates values in an interval.
linspace(...): Generates values in an interval.
load_file_system_library(...): Loads a TensorFlow plugin, containing file system implementation.
load_op_library(...): Loads a TensorFlow plugin, containing custom ops and kernels.
local_variables(...): Returns local variables.
local_variables_initializer(...): Returns an Op that initializes all local variables.
log(...): Computes natural logarithm of x element-wise.
log1p(...): Computes natural logarithm of (1 + x) element-wise.
log_sigmoid(...): Computes log sigmoid of x element-wise.
logical_and(...): Returns the truth value of x AND y element-wise.
logical_not(...): Returns the truth value of NOT x element-wise.
logical_or(...): Returns the truth value of x OR y element-wise.
logical_xor(...): x ^ y = (x | y) & ~(x & y).
make_ndarray(...): Create a numpy ndarray from a tensor.
make_template(...): Given an arbitrary function, wrap it so that it does variable sharing.
make_tensor_proto(...): Create a TensorProto.
map_fn(...): map on the list of tensors unpacked from elems on dimension 0.
matching_files(...): Returns the set of files matching one or more glob patterns.
matmul(...): Multiplies matrix a by matrix b, producing a * b.
matrix_band_part(...): Copy a tensor setting everything outside a central band in each innermost matrix
matrix_determinant(...): Computes the determinant of one or more square matrices.
matrix_diag(...): Returns a batched diagonal tensor with a given batched diagonal values.
matrix_diag_part(...): Returns the batched diagonal part of a batched tensor.
matrix_inverse(...): Computes the inverse of one or more square invertible matrices or their
matrix_set_diag(...): Returns a batched matrix tensor with new batched diagonal values.
matrix_solve(...): Solves systems of linear equations.
matrix_solve_ls(...): Solves one or more linear least-squares problems.
matrix_transpose(...): Transposes last two dimensions of tensor a.
matrix_triangular_solve(...): Solves systems of linear equations with upper or lower triangular matrices by
maximum(...): Returns the max of x and y (i.e. x > y ? x : y) element-wise.
meshgrid(...): Broadcasts parameters for evaluation on an N-D grid.
min_max_variable_partitioner(...): Partitioner to allocate minimum size per slice.
minimum(...): Returns the min of x and y (i.e. x < y ? x : y) element-wise.
mod(...): Returns element-wise remainder of division. When x < 0 xor y < 0 is
model_variables(...): Returns all variables in the MODEL_VARIABLES collection.
moving_average_variables(...): Returns all variables that maintain their moving averages.
multinomial(...): Draws samples from a multinomial distribution.
multiply(...): Returns x * y element-wise.
negative(...): Computes numerical negative value element-wise.
no_op(...): Does nothing. Only useful as a placeholder for control edges.
no_regularizer(...): Use this function to prevent regularization of variables.
norm(...): Computes the norm of vectors, matrices, and tensors. (deprecated arguments)
not_equal(...): Returns the truth value of (x != y) element-wise.
one_hot(...): Returns a one-hot tensor.
ones(...): Creates a tensor with all elements set to 1.
ones_like(...): Creates a tensor with all elements set to 1.
op_scope(...): DEPRECATED. Same as name_scope above, just different argument order.
pad(...): Pads a tensor.
parallel_stack(...): Stacks a list of rank-R tensors into one rank-(R+1) tensor in parallel.
parse_example(...): Parses Example protos into a dict of tensors.
parse_single_example(...): Parses a single Example proto.
parse_single_sequence_example(...): Parses a single SequenceExample proto.
parse_tensor(...): Transforms a serialized tensorflow.TensorProto proto into a Tensor.
placeholder(...): Inserts a placeholder for a tensor that will be always fed.
placeholder_with_default(...): A placeholder op that passes through input when its output is not fed.
polygamma(...): Compute the polygamma function .
pow(...): Computes the power of one value to another.
print(...): Prints a list of tensors.
py_func(...): Wraps a python function and uses it as a TensorFlow op.
qr(...): Computes the QR decompositions of one or more matrices.
quantize(...): Quantize the 'input' tensor of type float to 'output' tensor of type 'T'.
quantize_v2(...): Please use tf.quantize instead.
quantized_concat(...): Concatenates quantized tensors along one dimension.
random_crop(...): Randomly crops a tensor to a given size.
random_gamma(...): Draws shape samples from each of the given Gamma distribution(s).
random_normal(...): Outputs random values from a normal distribution.
random_poisson(...): Draws shape samples from each of the given Poisson distribution(s).
random_shuffle(...): Randomly shuffles a tensor along its first dimension.
random_uniform(...): Outputs random values from a uniform distribution.
range(...): Creates a sequence of numbers.
rank(...): Returns the rank of a tensor.
read_file(...): Reads and outputs the entire contents of the input filename.
real(...): Returns the real part of a complex (or real) tensor.
realdiv(...): Returns x / y element-wise for real types.
reciprocal(...): Computes the reciprocal of x element-wise.
reduce_all(...): Computes the "logical and" of elements across dimensions of a tensor. (deprecated arguments)
reduce_any(...): Computes the "logical or" of elements across dimensions of a tensor. (deprecated arguments)
reduce_join(...): Joins a string Tensor across the given dimensions.
reduce_logsumexp(...): Computes log(sum(exp(elements across dimensions of a tensor))). (deprecated arguments)
reduce_max(...): Computes the maximum of elements across dimensions of a tensor. (deprecated arguments)
reduce_mean(...): Computes the mean of elements across dimensions of a tensor. (deprecated arguments)
reduce_min(...): Computes the minimum of elements across dimensions of a tensor. (deprecated arguments)
reduce_prod(...): Computes the product of elements across dimensions of a tensor. (deprecated arguments)
reduce_sum(...): Computes the sum of elements across dimensions of a tensor. (deprecated arguments)
regex_replace(...): Replaces the match of pattern in input with rewrite.
register_tensor_conversion_function(...): Registers a function for converting objects of base_type to Tensor.
report_uninitialized_variables(...): Adds ops to list the names of uninitialized variables.
required_space_to_batch_paddings(...): Calculate padding required to make block_shape divide input_shape.
reset_default_graph(...): Clears the default graph stack and resets the global default graph.
reshape(...): Reshapes a tensor.
reverse(...): Reverses specific dimensions of a tensor.
reverse_sequence(...): Reverses variable length slices.
reverse_v2(...): Reverses specific dimensions of a tensor.
rint(...): Returns element-wise integer closest to x.
round(...): Rounds the values of a tensor to the nearest integer, element-wise.
rsqrt(...): Computes reciprocal of square root of x element-wise.
saturate_cast(...): Performs a safe saturating cast of value to dtype.
scalar_mul(...): Multiplies a scalar times a Tensor or IndexedSlices object.
scan(...): scan on the list of tensors unpacked from elems on dimension 0.
scatter_add(...): Adds sparse updates to the variable referenced by resource.
scatter_div(...): Divides a variable reference by sparse updates.
scatter_max(...): Reduces sparse updates into a variable reference using the max operation.
scatter_min(...): Reduces sparse updates into a variable reference using the min operation.
scatter_mul(...): Multiplies sparse updates into a variable reference.
scatter_nd(...): Scatter updates into a new tensor according to indices.
scatter_nd_add(...): Applies sparse addition between updates and individual values or slices
scatter_nd_sub(...): Applies sparse subtraction between updates and individual values or slices
scatter_nd_update(...): Applies sparse updates to individual values or slices in a Variable.
scatter_sub(...): Subtracts sparse updates to a variable reference.
scatter_update(...): Applies sparse updates to a variable reference.
segment_max(...): Computes the maximum along segments of a tensor.
segment_mean(...): Computes the mean along segments of a tensor.
segment_min(...): Computes the minimum along segments of a tensor.
segment_prod(...): Computes the product along segments of a tensor.
segment_sum(...): Computes the sum along segments of a tensor.
self_adjoint_eig(...): Computes the eigen decomposition of a batch of self-adjoint matrices.
self_adjoint_eigvals(...): Computes the eigenvalues of one or more self-adjoint matrices.
sequence_mask(...): Returns a mask tensor representing the first N positions of each cell.
serialize_many_sparse(...): Serialize N-minibatch SparseTensor into an [N, 3] Tensor.
serialize_sparse(...): Serialize a SparseTensor into a 3-vector (1-D Tensor) object.
serialize_tensor(...): Transforms a Tensor into a serialized TensorProto proto.
set_random_seed(...): Sets the graph-level random seed.
setdiff1d(...): Computes the difference between two lists of numbers or strings.
shape(...): Returns the shape of a tensor.
shape_n(...): Returns shape of tensors.
sigmoid(...): Computes sigmoid of x element-wise.
sign(...): Returns an element-wise indication of the sign of a number.
sin(...): Computes sin of x element-wise.
sinh(...): Computes hyperbolic sine of x element-wise.
size(...): Returns the size of a tensor.
slice(...): Extracts a slice from a tensor.
space_to_batch(...): SpaceToBatch for 4-D tensors of type T.
space_to_batch_nd(...): SpaceToBatch for N-D tensors of type T.
space_to_depth(...): SpaceToDepth for tensors of type T.
sparse_add(...): Adds two tensors, at least one of each is a SparseTensor.
sparse_concat(...): Concatenates a list of SparseTensor along the specified dimension. (deprecated arguments)
sparse_fill_empty_rows(...): Fills empty rows in the input 2-D SparseTensor with a default value.
sparse_mask(...): Masks elements of IndexedSlices.
sparse_matmul(...): Multiply matrix "a" by matrix "b".
sparse_maximum(...): Returns the element-wise max of two SparseTensors.
sparse_merge(...): Combines a batch of feature ids and values into a single SparseTensor.
sparse_minimum(...): Returns the element-wise min of two SparseTensors.
sparse_placeholder(...): Inserts a placeholder for a sparse tensor that will be always fed.
sparse_reduce_max(...): Computes the max of elements across dimensions of a SparseTensor.
sparse_reduce_max_sparse(...): Computes the max of elements across dimensions of a SparseTensor.
sparse_reduce_sum(...): Computes the sum of elements across dimensions of a SparseTensor.
sparse_reduce_sum_sparse(...): Computes the sum of elements across dimensions of a SparseTensor.
sparse_reorder(...): Reorders a SparseTensor into the canonical, row-major ordering.
sparse_reset_shape(...): Resets the shape of a SparseTensor with indices and values unchanged.
sparse_reshape(...): Reshapes a SparseTensor to represent values in a new dense shape.
sparse_retain(...): Retains specified non-empty values within a SparseTensor.
sparse_segment_mean(...): Computes the mean along sparse segments of a tensor.
sparse_segment_sqrt_n(...): Computes the sum along sparse segments of a tensor divided by the sqrt(N).
sparse_segment_sum(...): Computes the sum along sparse segments of a tensor.
sparse_slice(...): Slice a SparseTensor based on the start and `size.
sparse_softmax(...): Applies softmax to a batched N-D SparseTensor.
sparse_split(...): Split a SparseTensor into num_split tensors along axis. (deprecated arguments)
sparse_tensor_dense_matmul(...): Multiply SparseTensor (of rank 2) "A" by dense matrix "B".
sparse_tensor_to_dense(...): Converts a SparseTensor into a dense tensor.
sparse_to_dense(...): Converts a sparse representation into a dense tensor.
sparse_to_indicator(...): Converts a SparseTensor of ids into a dense bool indicator tensor.
sparse_transpose(...): Transposes a SparseTensor
split(...): Splits a tensor into sub tensors.
sqrt(...): Computes square root of x element-wise.
square(...): Computes square of x element-wise.
squared_difference(...): Returns (x - y)(x - y) element-wise.
squeeze(...): Removes dimensions of size 1 from the shape of a tensor. (deprecated arguments)
stack(...): Stacks a list of rank-R tensors into one rank-(R+1) tensor.
stop_gradient(...): Stops gradient computation.
strided_slice(...): Extracts a strided slice of a tensor (generalized python array indexing).
string_join(...): Joins the strings in the given list of string tensors into one tensor;
string_split(...): Split elements of source based on delimiter into a SparseTensor.
string_strip(...): Strip leading and trailing whitespaces from the Tensor.
string_to_hash_bucket(...): Converts each string in the input Tensor to its hash mod by a number of buckets.
string_to_hash_bucket_fast(...): Converts each string in the input Tensor to its hash mod by a number of buckets.
string_to_hash_bucket_strong(...): Converts each string in the input Tensor to its hash mod by a number of buckets.
string_to_number(...): Converts each string in the input Tensor to the specified numeric type.
substr(...): Return substrings from Tensor of strings.
subtract(...): Returns x - y element-wise.
svd(...): Computes the singular value decompositions of one or more matrices.
tables_initializer(...): Returns an Op that initializes all tables of the default graph.
tan(...): Computes tan of x element-wise.
tanh(...): Computes hyperbolic tangent of x element-wise.
tensordot(...): Tensor contraction of a and b along specified axes.
tile(...): Constructs a tensor by tiling a given tensor.
timestamp(...): Provides the time since epoch in seconds.
to_bfloat16(...): Casts a tensor to type bfloat16.
to_complex128(...): Casts a tensor to type complex128.
to_complex64(...): Casts a tensor to type complex64.
to_double(...): Casts a tensor to type float64.
to_float(...): Casts a tensor to type float32.
to_int32(...): Casts a tensor to type int32.
to_int64(...): Casts a tensor to type int64.
trace(...): Compute the trace of a tensor x.
trainable_variables(...): Returns all variables created with trainable=True.
transpose(...): Transposes a. Permutes the dimensions according to perm.
truediv(...): Divides x / y elementwise (using Python 3 division operator semantics).
truncated_normal(...): Outputs random values from a truncated normal distribution.
truncatediv(...): Returns x / y element-wise for integer types.
truncatemod(...): Returns element-wise remainder of division. This emulates C semantics in that
tuple(...): Group tensors together.
unique(...): Finds unique elements in a 1-D tensor.
unique_with_counts(...): Finds unique elements in a 1-D tensor.
unravel_index(...): Converts a flat index or array of flat indices into a tuple of
unsorted_segment_max(...): Computes the maximum along segments of a tensor.
unsorted_segment_mean(...): Computes the mean along segments of a tensor.
unsorted_segment_min(...): Computes the minimum along segments of a tensor.
unsorted_segment_prod(...): Computes the product along segments of a tensor.
unsorted_segment_sqrt_n(...): Computes the sum along segments of a tensor divided by the sqrt(N).
unsorted_segment_sum(...): Computes the sum along segments of a tensor.
unstack(...): Unpacks the given dimension of a rank-R tensor into rank-(R-1) tensors.
variable_axis_size_partitioner(...): Get a partitioner for VariableScope to keep shards below max_shard_bytes.
variable_op_scope(...): Deprecated: context manager for defining an op that creates variables.
variables_initializer(...): Returns an Op that initializes a list of variables.
verify_tensor_all_finite(...): Assert that the tensor does not contain any NaN's or Inf's.
where(...): Return the elements, either from x or y, depending on the condition.
while_loop(...): Repeat body while the condition cond is true.
write_file(...): Writes contents to the file at input filename. Creates file and recursively
zeros(...): Creates a tensor with all elements set to zero.
zeros_like(...): Creates a tensor with all elements set to zero.
zeta(...): Compute the Hurwitz zeta function .
Other Members
AUTO_REUSE
COMPILER_VERSION
CXX11_ABI_FLAG
GIT_VERSION
GRAPH_DEF_VERSION
GRAPH_DEF_VERSION_MIN_CONSUMER
GRAPH_DEF_VERSION_MIN_PRODUCER
MONOLITHIC_BUILD
QUANTIZED_DTYPES
VERSION
__all__
__cached__
__compiler_version__
__cxx11_abi_flag__
__git_version__
__loader__
__monolithic_build__
__spec__
__version__
bfloat16
bool
complex128
complex64
double
float16
float32
float64
half
int16
int32
int64
int8
newaxis
qint16
qint32
qint8
quint16
quint8
resource
string
uint16
uint32
uint64
uint8
variant
コメント
最新を表示する
NG表示方式
NGID一覧